Risk factors for 1-year allograft loss in pediatric heart transplant patients using machine learning: An analysis of the pediatric heart transplant society database

被引:1
|
作者
Wisotzkey, Bethany L. [1 ,10 ]
Jaeger, Byron [2 ]
Asante-Korang, Alfred [3 ]
Brickler, Molly [4 ]
Cantor, Ryan S. [5 ]
Everitt, Melanie D. [6 ]
Kirklin, James K. [5 ]
Koehl, Devin [5 ]
Mantell, Benjamin S. [7 ]
Thrush, Philip T. [8 ]
Kuhn, Micheal [9 ]
机构
[1] Univ Arizona, Phoenix Childrens Ctr Heart Care, Coll Med, Div Cardiol, Phoenix, AZ USA
[2] Wake Forest Univ, Bowman Gray Sch Med, Div Publ Hlth Sci, Biostat & Data Sci, Winston Salem, NC USA
[3] Johns Hopkins All Childrens Hosp, Div Cardiol, St Petersburg, FL USA
[4] Med Coll Wisconsin, Herma Heart Inst, Childrens Wisconsin, Dept Pediat,Sect Cardiol, Milwaukee, WI USA
[5] Kirklin Solut, Birmingham, AL USA
[6] Univ Colorado, Childrens Hosp Colorado, Div Cardiol, Aurora, CO USA
[7] Cincinnati Childrens Hosp Med Ctr, Dept Pediat, Div Pediat Cardiol, Cincinnati, OH USA
[8] Northwestern Univ, Ann & Robert H Lurie Childrens Hosp Chicago, Feinberg Sch Med, Div Cardiol, Chicago, IL USA
[9] Loma Linda Univ, Childrens Hosp & Med Ctr, Div Cardiol, Loma Linda, CA USA
[10] Univ Arizona, Phoenix Childrens Ctr Heart Care, Coll Med, Mech Circulatory Support Program,Heart Failure & T, 1919 East Thomas Rd,Main Tower, Phoenix, AZ 85016 USA
关键词
machine learning; pediatric heart transplant; INTERNATIONAL SOCIETY; PREDICTION; MORTALITY; SURVIVAL; REGISTRY; CHILDREN; CURVES; INDEX;
D O I
10.1111/petr.14612
中图分类号
R72 [儿科学];
学科分类号
100202 ;
摘要
BackgroundPediatric heart transplant patients are at greatest risk of allograft loss in the first year. We assessed whether machine learning could improve 1-year risk assessment using the Pediatric Heart Transplant Society database.MethodsPatients transplanted from 2010 to 2019 were included. The primary outcome was 1-year graft loss free survival. We developed a prediction model using cross-validation, by comparing Cox regression, gradient boosting, and random forests. The modeling strategy with the best discrimination and calibration was applied to fit a final prediction model. We used Shapley additive explanation (SHAP) values to perform variable selection and to estimate effect sizes and importance of individual variables when interpreting the final prediction model.ResultsCumulative incidence of graft loss or mortality was 7.6%. Random forests had favorable discrimination and calibration compared to Cox proportional hazards with a C-statistic (95% confidence interval [CI]) of 0.74 (0.72, 0.76) versus 0.71 (0.69, 0.73), and closer alignment between predicted and observed risk. SHAP values computed using the final prediction model indicated that the diagnosis of congenital heart disease (CHD) increased 1 year predicted risk of graft loss by 1.7 (i.e., from 7.6% to 9.3%), need for mechanical circulatory support increased predicted risk by 2, and single ventricle CHD increased predicted risk by 1.9. These three predictors, respectively, were also estimated to be the most important among the 15 predictors in the final model.ConclusionsRisk prediction models used to facilitate patient selection for pediatric heart transplant can be improved without loss of interpretability using machine learning. Data from children transplanted from 2010 to 2019 were analyzed using machine learning. Single ventricle congenital heart disease contributed most to overall risk in the first year, followed closely by mechanical circulatory support at the time of transplant and a history of cardiac surgery prior to being listed for transplant.image
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Predicting Graft Loss by 1 Year in Pediatric Heart Transplantation Candidates An Analysis of the Pediatric Heart Transplant Study Database
    Schumacher, Kurt R.
    Almond, Christopher
    Singh, Tajinder P.
    Kirk, Richard
    Spicer, Robert
    Hoffman, Timothy M.
    Hsu, Daphne
    Naftel, David C.
    Pruitt, Elizabeth
    Zamberlan, Mary
    Canter, Charles E.
    Gajarski, Robert J.
    CIRCULATION, 2015, 131 (10) : 890 - +
  • [2] Waitlist Outcomes for Pediatric Heart Transplantation in the Current Era: An Analysis of the Pediatric Heart Transplant Society Database
    Butts, Ryan J.
    Toombs, Leah
    Kirklin, James K.
    Schumacher, Kurt R.
    Conway, Jennifer
    West, Shawn C.
    Auerbach, Scott
    Bansal, Neha
    Zhao, Hong
    Cantor, Ryan S.
    Nandi, Deipanjan
    Peng, David M.
    CIRCULATION, 2024, 150 (05) : 362 - 373
  • [3] Educational and learning morbidity in pediatric heart transplant recipients: A pediatric heart transplant society study
    Brosbe, Micah S.
    Wright, Lydia K.
    Cantor, Ryan
    Dreyer, William J.
    Kirmani, Sonya
    Knight, Margaret
    Nakano, Stephanie J.
    Kindel, Steven J.
    Ryan, Thomas D.
    Kirklin, James K.
    Deshpande, Shriprasad R.
    PEDIATRIC TRANSPLANTATION, 2020, 24 (04)
  • [4] Early aspirin use and the development of cardiac allograft vasculopathy in pediatric heart transplant recipients: A pediatric heart transplant society analysis
    D'Addese, Laura
    Cantor, Ryan S.
    Koehl, Devin
    Reardon, Leigh
    Ameduri, Rebecca
    Bock, Matthew
    Morrison, Adam
    White, Shelby
    Wisotzkey, Bethany
    Kirklin, James K.
    Godown, Justin
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2023, 42 (01): : 115 - 123
  • [5] Survival analysis for pediatric heart transplant patients using a novel machine learning algorithm: A UNOS analysis
    Ashfaq, Awais
    Gray, Geoffrey M.
    Carapelluci, Jennifer
    Amankwah, Ernest K.
    Rehman, Mohamed
    Puchalski, Michael
    Smith, Andrew
    Quintessenza, James A.
    Laks, Jessica
    Ahumada, Luis M.
    Asante-Korang, Alfred
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2023, 42 (10): : 1341 - 1348
  • [6] The impact of flow PRA on outcome in pediatric heart recipients in modern era: An analysis of the Pediatric Heart Transplant Study database
    Das, B. B.
    Pruitt, E.
    Molina, K.
    Ravekes, W.
    Auerbach, S.
    Savage, A.
    Knox, L.
    Kirklin, J. K.
    Naftel, D. C.
    Hsu, D.
    PEDIATRIC TRANSPLANTATION, 2018, 22 (01)
  • [7] Risk factors for specific causes of death following pediatric heart transplant: An analysis of the registry of the International Society of Heart and Lung Transplantation
    Vanderlaan, R. D.
    Manlhiot, C.
    Edwards, L. B.
    Conway, J.
    McCrindle, B. W.
    Dipchand, A. I.
    PEDIATRIC TRANSPLANTATION, 2015, 19 (08) : 896 - 905
  • [8] Early Postoperative Volume Overload is a Predictor of 1-Year Post-Transplant Mortality in Pediatric Heart Transplant Recipients
    Lim, Michelle J.
    Sim, Myung-Shin
    Pan, Sylvia
    Alejos, Juan
    Federman, Myke
    PEDIATRIC CARDIOLOGY, 2023, 44 (05) : 1014 - 1022
  • [9] Prediction of mortality following pediatric heart transplant using machine learning algorithms
    Miller, Rebecca
    Tumin, Dmitry
    Cooper, Jennifer
    Hayes, Don, Jr.
    Tobias, Joseph D.
    PEDIATRIC TRANSPLANTATION, 2019, 23 (03)
  • [10] Practice variation in the diagnosis of acute rejection among pediatric heart transplant centers: An analysis of the pediatric heart transplant society (PHTS) registry
    Godown, J.
    Cantor, R.
    Koehl, D.
    Cummings, E.
    Vo, J. B.
    Dodd, D. A.
    Lytrivi, I
    Boyle, G. J.
    Sutcliffe, D. L.
    Kleinmahon, J. A.
    Shih, R.
    Urschel, S.
    Das, B.
    Carlo, W. F.
    Zuckerman, W. A.
    West, S. C.
    McCulloch, M. A.
    Zinn, M. D.
    Simpson, K. E.
    Kindel, S. J.
    Szmuszkovicz, J. R.
    Chrisant, M.
    Auerbach, S. R.
    Carboni, M. P.
    Kirklin, J. K.
    Hsu, D. T.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2021, 40 (12): : 1550 - 1559