Exploring hafnium oxide's potential for passivating contacts for silicon solar cells

被引:9
作者
Wratten, A. [1 ]
Pain, S. L. [1 ]
Yadav, A. [1 ]
Khorani, E. [1 ]
Niewelt, T. [1 ,2 ,3 ]
Black, L. [4 ]
Bartholazzi, G. [4 ]
Walker, D. [5 ]
Grant, N. E. [1 ]
Murphy, J. D. [1 ]
机构
[1] Univ Warwick, Sch Engn, Coventry CV4 7AL, England
[2] Fraunhofer Inst Solar Energy Syst ISE, Heidenhofstr 2, D-79110 Freiburg, Germany
[3] Univ Freiburg, Lab Photovolta Energy Convers, Emmy Noether Str 2, D-79110 Freiburg, Germany
[4] Australian Natl Univ, Sch Engn, Canberra 2600, Australia
[5] Univ Warwick, Dept Phys, Coventry CV4 7AL, England
基金
英国工程与自然科学研究理事会; 英国科学技术设施理事会;
关键词
Silicon; Passivation; Contact; HfO2; Atomic layer deposition; SURFACE PASSIVATION; CRYSTALLINE SILICON; FORCE MICROSCOPY; HFO2; TRANSITION; EXTRACTION; MECHANISM; LAYERS; FILMS;
D O I
10.1016/j.solmat.2023.112457
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We investigate the potential of ultra-thin HfO2 films grown by atomic layer deposition for passivating contacts to silicon focusing on variations in film thickness and post-deposition annealing temperature. A peak in passivation quality - as assessed by carrier lifetime measurements - is reported for 2.2 nm thick films annealed at 475 degrees C, for which a surface recombination velocity <1 cm/s is determined. For films <2.2 nm thick, there is a marked decrease in passivation quality. X-ray diffraction highlights a change from crystallised monoclinic to amorphous HfO2 as film thickness decreases from 12 nm to 2.2 nm. Kelvin probe results indicate that as-deposited 2.2-12 nm films have similar effective work functions, although the work function of 1 nm films is considerably lower. Upon post-deposition annealing in vacuum, all films exhibit a reduction in effective work function at temperatures coincident with the onset of passivation in air-annealed samples. An initial investigation into the contact resistivity in a passivating contact structure utilizing HfO2 reveals a strong post-deposition annealing temperature dependence, with the lowest resistance achieved below 375 degrees C, followed by a decrease in performance as temperature increases towards the optimal temperature for passivation (475 degrees C). Limitations of the contact structure used are discussed.
引用
收藏
页数:11
相关论文
共 50 条
[31]   Crystalline Si Solar Cells with Passivating, Carrier-selective Nickel Oxide Contacts [J].
Yoon, Woojun ;
Moore, James ;
Scheiman, David ;
Cho, Eunhwan ;
Ok, Young-Woo ;
Kotulak, Nicole ;
Jenkins, Phillip P. ;
Rohatgi, Ajeet ;
Walters, Robert J. .
2017 IEEE 44TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2017, :1838-1840
[32]   Role of polysilicon in poly-Si/SiOx passivating contacts for high-efficiency silicon solar cells [J].
Park, HyunJung ;
Bae, Soohyun ;
Park, Se Jin ;
Hyun, Ji Yeon ;
Lee, Chang Hyun ;
Choi, Dongjin ;
Kang, Dongkyun ;
Han, Hyebin ;
Kang, Yoonmook ;
Lee, Hae-Seok ;
Kim, Donghwan .
RSC ADVANCES, 2019, 9 (40) :23261-23266
[33]   Diode Laser-Crystallization for the Formation of Passivating Contacts for Solar Cells [J].
Gawlik, Annett ;
Glatthaar, Raphael ;
Dellith, Andrea ;
Jia, Guobin ;
Dellith, Jan ;
Terheiden, Barbara ;
Plentz, Jonathan .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2022, 16 (05)
[34]   Double Heterojunction Crystalline Silicon Solar Cells: From Doped Silicon to Dopant-Free Passivating Contacts [J].
Wong, Terence K. S. ;
Pei, Keyi .
PHOTONICS, 2022, 9 (07)
[35]   SiNx and AlOx Nanolayers in Hole Selective Passivating Contacts for High Efficiency Silicon Solar Cells [J].
McNab, Shona ;
Niu, Xinya ;
Khorani, Edris ;
Wratten, Ailish ;
Morisset, Audrey ;
Grant, Nicholas E. ;
Murphy, John D. ;
Altermatt, Pietro P. ;
Wright, Matthew ;
Wilshaw, Peter R. ;
Bonilla, Ruy S. .
IEEE JOURNAL OF PHOTOVOLTAICS, 2023, 13 (01) :22-32
[36]   Interfacial engineering of ZnS passivating contacts for crystalline silicon solar cells achieving 20% efficiency [J].
Wang, Yanhao ;
Gu, Zeyu ;
Li, Le ;
Liu, Siyi ;
Li, Jingjie ;
Lu, Linfeng ;
Li, Xiaodong ;
Liu, Wenzhu ;
Liu, Ronglin ;
Chen, Jia ;
Wang, Yichen ;
Zhang, Shan-Ting ;
Li, Dongdong .
MATERIALS TODAY ENERGY, 2023, 35
[37]   Hafnium oxide-A promising addition to the zoo of passivation layers for silicon solar cells? [J].
Schmidt, Jan ;
Winter, Michael ;
Guenther, Dag Luis ;
Souren, Floor ;
Bolding, Jons ;
de Vries, Hindrik .
AIP ADVANCES, 2025, 15 (06)
[38]   Solution-based hafnium oxide thin films as potential antireflection coating for silicon solar cells [J].
Kanmaz, Imran ;
Mandong, Al Montazer ;
Uzum, Abdullah .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (23) :21279-21287
[39]   Chemical stoichiometry effect of hafnium oxide (HfOx) for passivation layer of PERC solar cells [J].
Kim, Jaeun ;
Ju, Minkyu ;
Kim, Youngkuk ;
Yi, Junsin .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2022, 148
[40]   Towards low cost, industrially compatible silicon heterojunction solar cells using hybrid carrier selective passivating contacts [J].
Bilal, Bisma ;
Najeeb-ud-Din, Hakim .
OPTICAL MATERIALS, 2022, 124