Exploring hafnium oxide's potential for passivating contacts for silicon solar cells

被引:9
作者
Wratten, A. [1 ]
Pain, S. L. [1 ]
Yadav, A. [1 ]
Khorani, E. [1 ]
Niewelt, T. [1 ,2 ,3 ]
Black, L. [4 ]
Bartholazzi, G. [4 ]
Walker, D. [5 ]
Grant, N. E. [1 ]
Murphy, J. D. [1 ]
机构
[1] Univ Warwick, Sch Engn, Coventry CV4 7AL, England
[2] Fraunhofer Inst Solar Energy Syst ISE, Heidenhofstr 2, D-79110 Freiburg, Germany
[3] Univ Freiburg, Lab Photovolta Energy Convers, Emmy Noether Str 2, D-79110 Freiburg, Germany
[4] Australian Natl Univ, Sch Engn, Canberra 2600, Australia
[5] Univ Warwick, Dept Phys, Coventry CV4 7AL, England
基金
英国科学技术设施理事会; 英国工程与自然科学研究理事会;
关键词
Silicon; Passivation; Contact; HfO2; Atomic layer deposition; SURFACE PASSIVATION; CRYSTALLINE SILICON; FORCE MICROSCOPY; HFO2; TRANSITION; EXTRACTION; MECHANISM; LAYERS; FILMS;
D O I
10.1016/j.solmat.2023.112457
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We investigate the potential of ultra-thin HfO2 films grown by atomic layer deposition for passivating contacts to silicon focusing on variations in film thickness and post-deposition annealing temperature. A peak in passivation quality - as assessed by carrier lifetime measurements - is reported for 2.2 nm thick films annealed at 475 degrees C, for which a surface recombination velocity <1 cm/s is determined. For films <2.2 nm thick, there is a marked decrease in passivation quality. X-ray diffraction highlights a change from crystallised monoclinic to amorphous HfO2 as film thickness decreases from 12 nm to 2.2 nm. Kelvin probe results indicate that as-deposited 2.2-12 nm films have similar effective work functions, although the work function of 1 nm films is considerably lower. Upon post-deposition annealing in vacuum, all films exhibit a reduction in effective work function at temperatures coincident with the onset of passivation in air-annealed samples. An initial investigation into the contact resistivity in a passivating contact structure utilizing HfO2 reveals a strong post-deposition annealing temperature dependence, with the lowest resistance achieved below 375 degrees C, followed by a decrease in performance as temperature increases towards the optimal temperature for passivation (475 degrees C). Limitations of the contact structure used are discussed.
引用
收藏
页数:11
相关论文
共 50 条
[21]   Spatial Atomic Layer Deposition of Aluminum Oxide as a Passivating Hole Contact for Silicon Solar Cells [J].
Ogutman, Kortan ;
Iqbal, Nafis ;
Gregory, Geoffrey ;
Li, Mengjie ;
Haslinger, Michael ;
Cornagliotti, Emanuele ;
Schoenfeld, Winston, V ;
John, Joachim ;
Davis, Kristopher O. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2020, 217 (18)
[22]   Temperature-dependent performance of silicon solar cells with polysilicon passivating contacts [J].
Le, Anh Huy Tuan ;
Basnet, Rabin ;
Yan, Di ;
Chen, Wenhao ;
Nandakumar, Naomi ;
Duttagupta, Shubham ;
Seif, Johannes P. ;
Hameiri, Ziv .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 225
[23]   Tunnel silicon oxynitride phase transformation for n-type polysilicon passivating contacts in crystalline silicon solar cells [J].
Alamgeer ;
Khokhar, Muhammad Quddamah ;
Yousuf, Hasnain ;
Dao, Vinh-Ai ;
Bae, Junhan ;
Kim, Eui Ho ;
Park, Sangheon ;
Pham, Duy Phong ;
Yi, Junsin .
INORGANIC CHEMISTRY COMMUNICATIONS, 2024, 170
[24]   Passivating Contacts for Silicon Solar Cells with 800 °C Stability Based on Tunnel-Oxide and Highly Crystalline Thin Silicon Layer [J].
Stuckelberger, J. ;
Nogay, G. ;
Wyss, P. ;
Lehmann, M. ;
Allebe, C. ;
Debrot, F. ;
Ledinsky, M. ;
Fejfar, A. ;
Despeisse, M. ;
Haug, F. -J. ;
Loper, P. ;
Ballif, Christophe .
2016 IEEE 43RD PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2016, :2518-2521
[25]   Passivating electron contact based on highly crystalline nanostructured silicon oxide layers for silicon solar cells [J].
Stuckelberger, Josua ;
Nogay, Gizem ;
Wyss, Philippe ;
Jeangros, Quentin ;
Allebe, Christophe ;
Debrot, Fabien ;
Niquille, Xavier ;
Ledinsky, Martin ;
Fejfar, Antonin ;
Despeisse, Matthieu ;
Haug, Franz-Josef ;
Loper, Philipp ;
Ballif, Christophe .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 158 :2-10
[26]   Fabrication of silicon-nanocrystals-embedded silicon oxide passivating contacts [J].
Tsubata, Ryohei ;
Gotoh, Kazuhiro ;
Kurokawa, Yasuyoshi ;
Usami, Noritaka .
2020 47TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2020, :969-972
[27]   Hydrogenation of silicon-nanocrystals-embedded silicon oxide passivating contacts [J].
Matsumi, Masashi ;
Gotoh, Kazuhiro ;
Wilde, Markus ;
Kurokawa, Yasuyoshi ;
Fukutani, Katsuyuki ;
Usami, Noritaka .
NANOTECHNOLOGY, 2024, 35 (10)
[28]   Hydrogenation by catalytically generated atomic hydrogen for passivating contacts in crystalline silicon solar cells [J].
Wen, Yuli ;
Tu, Huynh Thi Cam ;
Ohdaira, Keisuke .
VACUUM, 2024, 229
[29]   Dopant-free passivating contacts for crystalline silicon solar cells: Progress and prospects [J].
Wang, Yanhao ;
Zhang, Shan-Ting ;
Li, Le ;
Yang, Xinbo ;
Lu, Linfeng ;
Li, Dongdong .
ECOMAT, 2023, 5 (02)
[30]   Polysilicon Passivating Contacts for Silicon Solar Cells: Interface Passivation and Carrier Transport Mechanism [J].
Liu, Wenzhu ;
Yang, Xinbo ;
Kang, Jingxuan ;
Li, Shuai ;
Xu, Lujia ;
Zhang, Song ;
Xu, Hang ;
Peng, Jun ;
Xie, Feng ;
Fu, Jui-Han ;
Wang, Kai ;
Liu, Jiang ;
Alzahrani, Areej ;
De Wolf, Stefaan .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (07) :4609-4617