Exploring hafnium oxide's potential for passivating contacts for silicon solar cells

被引:7
作者
Wratten, A. [1 ]
Pain, S. L. [1 ]
Yadav, A. [1 ]
Khorani, E. [1 ]
Niewelt, T. [1 ,2 ,3 ]
Black, L. [4 ]
Bartholazzi, G. [4 ]
Walker, D. [5 ]
Grant, N. E. [1 ]
Murphy, J. D. [1 ]
机构
[1] Univ Warwick, Sch Engn, Coventry CV4 7AL, England
[2] Fraunhofer Inst Solar Energy Syst ISE, Heidenhofstr 2, D-79110 Freiburg, Germany
[3] Univ Freiburg, Lab Photovolta Energy Convers, Emmy Noether Str 2, D-79110 Freiburg, Germany
[4] Australian Natl Univ, Sch Engn, Canberra 2600, Australia
[5] Univ Warwick, Dept Phys, Coventry CV4 7AL, England
基金
英国工程与自然科学研究理事会; 英国科学技术设施理事会;
关键词
Silicon; Passivation; Contact; HfO2; Atomic layer deposition; SURFACE PASSIVATION; CRYSTALLINE SILICON; FORCE MICROSCOPY; HFO2; TRANSITION; EXTRACTION; MECHANISM; LAYERS; FILMS;
D O I
10.1016/j.solmat.2023.112457
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We investigate the potential of ultra-thin HfO2 films grown by atomic layer deposition for passivating contacts to silicon focusing on variations in film thickness and post-deposition annealing temperature. A peak in passivation quality - as assessed by carrier lifetime measurements - is reported for 2.2 nm thick films annealed at 475 degrees C, for which a surface recombination velocity <1 cm/s is determined. For films <2.2 nm thick, there is a marked decrease in passivation quality. X-ray diffraction highlights a change from crystallised monoclinic to amorphous HfO2 as film thickness decreases from 12 nm to 2.2 nm. Kelvin probe results indicate that as-deposited 2.2-12 nm films have similar effective work functions, although the work function of 1 nm films is considerably lower. Upon post-deposition annealing in vacuum, all films exhibit a reduction in effective work function at temperatures coincident with the onset of passivation in air-annealed samples. An initial investigation into the contact resistivity in a passivating contact structure utilizing HfO2 reveals a strong post-deposition annealing temperature dependence, with the lowest resistance achieved below 375 degrees C, followed by a decrease in performance as temperature increases towards the optimal temperature for passivation (475 degrees C). Limitations of the contact structure used are discussed.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Spatial Atomic Layer Deposition of Aluminum Oxide as a Passivating Hole Contact for Silicon Solar Cells
    Ogutman, Kortan
    Iqbal, Nafis
    Gregory, Geoffrey
    Li, Mengjie
    Haslinger, Michael
    Cornagliotti, Emanuele
    Schoenfeld, Winston, V
    John, Joachim
    Davis, Kristopher O.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2020, 217 (18):
  • [22] Temperature-dependent performance of silicon solar cells with polysilicon passivating contacts
    Le, Anh Huy Tuan
    Basnet, Rabin
    Yan, Di
    Chen, Wenhao
    Nandakumar, Naomi
    Duttagupta, Shubham
    Seif, Johannes P.
    Hameiri, Ziv
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 225
  • [23] Tunnel silicon oxynitride phase transformation for n-type polysilicon passivating contacts in crystalline silicon solar cells
    Alamgeer
    Khokhar, Muhammad Quddamah
    Yousuf, Hasnain
    Dao, Vinh-Ai
    Bae, Junhan
    Kim, Eui Ho
    Park, Sangheon
    Pham, Duy Phong
    Yi, Junsin
    INORGANIC CHEMISTRY COMMUNICATIONS, 2024, 170
  • [24] Passivating Contacts for Silicon Solar Cells with 800 °C Stability Based on Tunnel-Oxide and Highly Crystalline Thin Silicon Layer
    Stuckelberger, J.
    Nogay, G.
    Wyss, P.
    Lehmann, M.
    Allebe, C.
    Debrot, F.
    Ledinsky, M.
    Fejfar, A.
    Despeisse, M.
    Haug, F. -J.
    Loper, P.
    Ballif, Christophe
    2016 IEEE 43RD PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2016, : 2518 - 2521
  • [25] Passivating electron contact based on highly crystalline nanostructured silicon oxide layers for silicon solar cells
    Stuckelberger, Josua
    Nogay, Gizem
    Wyss, Philippe
    Jeangros, Quentin
    Allebe, Christophe
    Debrot, Fabien
    Niquille, Xavier
    Ledinsky, Martin
    Fejfar, Antonin
    Despeisse, Matthieu
    Haug, Franz-Josef
    Loper, Philipp
    Ballif, Christophe
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 158 : 2 - 10
  • [26] Fabrication of silicon-nanocrystals-embedded silicon oxide passivating contacts
    Tsubata, Ryohei
    Gotoh, Kazuhiro
    Kurokawa, Yasuyoshi
    Usami, Noritaka
    2020 47TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2020, : 969 - 972
  • [27] Hydrogenation by catalytically generated atomic hydrogen for passivating contacts in crystalline silicon solar cells
    Wen, Yuli
    Tu, Huynh Thi Cam
    Ohdaira, Keisuke
    VACUUM, 2024, 229
  • [28] Hydrogenation of silicon-nanocrystals-embedded silicon oxide passivating contacts
    Matsumi, Masashi
    Gotoh, Kazuhiro
    Wilde, Markus
    Kurokawa, Yasuyoshi
    Fukutani, Katsuyuki
    Usami, Noritaka
    NANOTECHNOLOGY, 2024, 35 (10)
  • [29] Dopant-free passivating contacts for crystalline silicon solar cells: Progress and prospects
    Wang, Yanhao
    Zhang, Shan-Ting
    Li, Le
    Yang, Xinbo
    Lu, Linfeng
    Li, Dongdong
    ECOMAT, 2023, 5 (02)
  • [30] Polysilicon Passivating Contacts for Silicon Solar Cells: Interface Passivation and Carrier Transport Mechanism
    Liu, Wenzhu
    Yang, Xinbo
    Kang, Jingxuan
    Li, Shuai
    Xu, Lujia
    Zhang, Song
    Xu, Hang
    Peng, Jun
    Xie, Feng
    Fu, Jui-Han
    Wang, Kai
    Liu, Jiang
    Alzahrani, Areej
    De Wolf, Stefaan
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (07) : 4609 - 4617