M-Quantile Estimation for GARCH Models

被引:0
|
作者
Patrocinio, Patrick F. F. [1 ,2 ,4 ]
Reisen, Valderio A. A. [1 ,2 ,3 ,4 ,5 ]
Bondon, Pascal [4 ]
Monte, Edson Z. Z. [1 ,2 ]
Danilevicz, Ian M. M. [3 ,4 ]
机构
[1] PPGEco, Ave Fernando Ferrari, BR-29075910 Vitoria, ES, Brazil
[2] Fed Univ Espirito St, Dept Econ, Ave Fernando Ferrari, BR-29075910 Vitoria, ES, Brazil
[3] Univ Fed Minas Gerais, Dept Stat, Ave Pres Antonio Carlos, BR-31270901 Belo Horizonte, MG, Brazil
[4] Univ Paris Saclay, Lab Signaux & Syst, CNRS, CentSupelec, F-91190 Gif Sur Yvette, France
[5] Univ Fed Bahia, Inst Math & Stat, Salvador, Brazil
关键词
GARCH; M-estimation; Quantile; Robustness; Outliers; Abrupt observations; AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY; ADDITIVE OUTLIERS; PARAMETERS;
D O I
10.1007/s10614-023-10398-z
中图分类号
F [经济];
学科分类号
02 ;
摘要
M-regression and quantile methods have been suggested to estimate generalized autoregressive conditionally heteroscedastic (GARCH) models. In this paper, we propose an M-quantile approach, which combines quantile and M-regression to obtain a robust estimator of the conditional volatility when the data have abrupt observations or heavy-tailed distributions. Monte Carlo experiments are conducted to show that the M-quantile approach is more resistant against additive outliers than M-regression and quantile methods. The usefulness of the method is illustrated on two financial datasets.
引用
收藏
页码:2175 / 2192
页数:18
相关论文
共 50 条
  • [1] M-quantile models for small area estimation
    Chambers, Ray
    Tzavidis, Nikos
    BIOMETRIKA, 2006, 93 (02) : 255 - 268
  • [2] Finite mixtures of quantile and M-quantile regression models
    Alfo, Marco
    Salvati, Nicola
    Ranallli, M. Giovanna
    STATISTICS AND COMPUTING, 2017, 27 (02) : 547 - 570
  • [3] M-quantile models with application to poverty mapping
    Tzavidis, Nikos
    Salvati, Nicola
    Pratesi, Monica
    Chambers, Ray
    STATISTICAL METHODS AND APPLICATIONS, 2008, 17 (03): : 393 - 411
  • [4] M-quantile models with application to poverty mapping
    Nikos Tzavidis
    Nicola Salvati
    Monica Pratesi
    Ray Chambers
    Statistical Methods and Applications, 2008, 17 : 393 - 411
  • [5] Estimation and Testing in M-quantile Regression with Applications to Small Area Estimation
    Bianchi, Annamaria
    Fabrizi, Enrico
    Salvati, Nicola
    Tzavidis, Nikos
    INTERNATIONAL STATISTICAL REVIEW, 2018, 86 (03) : 541 - 570
  • [6] Small area estimation based on M-quantile models in presence of outliers in auxiliary variables
    Marchetti, Stefano
    Giusti, Caterina
    Salvati, Nicola
    Pratesi, Monica
    STATISTICAL METHODS AND APPLICATIONS, 2017, 26 (04): : 531 - 555
  • [7] M-Quantile Small Area Estimation for Panel Data
    Bianchi, Annamaria
    TOPICS IN THEORETICAL AND APPLIED STATISTICS, 2016, : 123 - 131
  • [8] Small area estimation based on M-quantile models in presence of outliers in auxiliary variables
    Stefano Marchetti
    Caterina Giusti
    Nicola Salvati
    Monica Pratesi
    Statistical Methods & Applications, 2017, 26 : 531 - 555
  • [9] Adaptive semiparametric M-quantile regression
    Otto-Sobotka, Fabian
    Salvati, Nicola
    Ranalli, Maria Giovanna
    Kneib, Thomas
    ECONOMETRICS AND STATISTICS, 2019, 11 : 116 - 129
  • [10] Small area estimation via M-quantile geographically weighted regression
    N. Salvati
    N. Tzavidis
    M. Pratesi
    R. Chambers
    TEST, 2012, 21 : 1 - 28