Priority Lithium recovery from spent Li-ion batteries via carbothermal reduction with water leaching

被引:53
|
作者
Yan, Zhiming [1 ]
Sattar, Anwar [1 ]
Li, Zushu [1 ]
机构
[1] Univ Warwick, WMG, Coventry CV4 7AL, England
关键词
Spent Li-ion battery; Priority lithium recovery; Carbothermal reduction; Water leaching; VALUABLE METALS; RECYCLING METALS; SODIUM-SALTS; PC; 88A; SEPARATION; COBALT; NICKEL(II); EXTRACTION; MANGANESE; CARBONATE;
D O I
10.1016/j.resconrec.2023.106937
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Lithium is one of the most valuable elements within lithium-ion batteries, but it is also one of the least recycled metals owing to its high reactivity, solubility, and low abundance. This work presents an improved carbothermal reduction combined with a water leaching process for lithium recovery from Li(NixMnyCo1-x-y)O2 cathode ma-terials. Based on the thermodynamic analysis of the carbothermal reduction, the reduction products at different temperatures are clarified. The effects of various factors such as roasting temperature, liquid-solid ratio, and leaching time are assessed on lithium leaching efficiency. The reduced products are characterized by XRD, SEM -EDS, and SIMS. Results show that Co and Ni are reduced to metal, Mn remains as an oxide, whilst Li is converted mainly into Li2CO3 at temperatures lower than 800 degrees C and Li2O when the temperature exceeds 900 degrees C. Water leaching was used to efficiently extract lithium using low liquid-solid ratios. This improved lithium extraction process can effectively recover more than 93% of lithium as lithium hydroxide or carbonate at a purity greater than 99.5%. The effect of aluminium and copper impurities on the lithium recovery rate was investigated and it was found that copper has no significant effect on the lithium recovery rate, but the presence of aluminium decreases the lithium recovery rate through the production of lithium aluminate.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Selective Lithium Leaching from Spent Lithium-Ion Batteries via a Combination of Reduction Roasting and Mechanochemical Activation
    Zhang, Yu
    Guo, Jiangmin
    Yu, Meng
    Li, Xingrui
    Liu, Shaojun
    Song, Hao
    Wu, Weihong
    Zheng, Chenghang
    Gao, Xiang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (17) : 6629 - 6639
  • [22] Recovery of Cobalt and Lithium Values from Discarded Li-Ion Batteries
    Vishvakarma, Shubham
    Dhawan, Nikhil
    JOURNAL OF SUSTAINABLE METALLURGY, 2019, 5 (02) : 204 - 209
  • [23] Cathodes of spent Li-ion batteries: Dissolution with phosphoric acid and recovery of lithium and cobalt from leach liquors
    Pinna, Eliana G.
    Ruiz, M. C.
    Ojeda, Manuel W.
    Rodriguez, Mario H.
    HYDROMETALLURGY, 2017, 167 : 66 - 71
  • [24] Stepwise Recovery of Valuable Metals from Spent Lithium Ion Batteries by Controllable Reduction and Selective Leaching and Precipitation
    Zhang, Yingchao
    Wang, Wenqiang
    Hu, Jiehui
    Zhang, Tao
    Xu, Shengming
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (41) : 15496 - 15506
  • [25] Recovery of Co, Li, and Ni from Spent Li-Ion Batteries by the Inorganic and/or Organic Reducer Assisted Leaching Method
    Urbanska, Weronika
    MINERALS, 2020, 10 (06) : 1 - 13
  • [26] Effective Methodology for Selective Recovery of Lithium Values from Discarded Li-Ion Batteries
    Barnwal, Amit
    Balakrishna, Mudavath
    Bais, Priyadarshini
    Nair, Rajesh Kumar Sivasankaran
    Ravendran, Ratheesh
    Kaushal, Ajay
    JOM, 2023, 75 (04) : 1119 - 1127
  • [27] Recovery of Co and Li from spent lithium-ion batteries by combination method of acid leaching and chemical precipitation
    Zhu Shu-guang
    He Wen-zhi
    Li Guang-ming
    Zhou Xu
    Zhang Xiao-jun
    Huang Ju-wen
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2012, 22 (09) : 2274 - 2281
  • [28] Recent and Novel Leaching Processes for Recovery of Metals from Spent Lithium-ion Batteries: A Review
    Bishnoi, Charu
    Daware, Santosh Vasant
    Rai, Beena
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2024, 77 (11) : 3139 - 3152
  • [29] Recovery of high-value metals from the cathode of spent lithium-ion batteries via acid leaching: A review
    Gebeyehu, Kaleab Bizuneh
    Chen, Linlin
    Fan, Linjing
    Chao, Yanhong
    Zhu, Wenshuai
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2025, 13 (03):
  • [30] ACIDIC LEACHING OF Li-ION BATTERIES
    Silva, Rafael Gundim
    Afonso, Julio Carlos
    Mahler, Claudio Fernando
    QUIMICA NOVA, 2018, 41 (05): : 581 - 586