Hydrogen-bonds reconstructing electrolyte enabling low-temperature aluminum-air batteries

被引:23
|
作者
Lv, Chaonan [1 ]
Zhu, Yuanxin [1 ]
Li, Yixin [1 ]
Zhang, Yuxin [1 ]
Kuang, Jialin [1 ]
Tang, Yougen [1 ]
Li, Huanhuan [2 ]
Wang, Haiyan [1 ]
机构
[1] Cent South Univ, Coll Chem & Chem Engn, Hunan Prov Key Lab Chem Power Sources, Changsha 410083, Peoples R China
[2] Henan Normal Univ, Sch Chem & Chem Engn, Xinxiang 453007, Peoples R China
关键词
Hydrogen bond; Low temperature; Hydrogen evolution reaction; Aluminum -air batteries;
D O I
10.1016/j.ensm.2023.03.034
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous aluminum-air batteries are promising candidates for the next generation of energy storage/conversion systems with high safety and low cost. However, the inevitable hydrogen evolution reaction on the metal aluminum anode and the freeze of aqueous electrolytes hinder the practical application of aluminum-air batteries at both room temperatures and subzero temperatures. Herein, we report a hydrogen-bonds reconstructing electrolyte strategy to boost aluminum-air batteries through the dipole of glycerol molecule, thus suppressing the self-corrosion of aluminum anode and lowering down the freezing point of electrolyte. This glycerol-based electrolyte endows a flow aluminum-air full battery with an outstanding specific capacity of 1886 mAh g-1 and a low operating temperature of -60 degrees C. This finding provides a synthetic design strategy to mitigate metal corrosion and expand the application range of temperature adaptation of aqueous batteries.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] STUDY OF MUTUAL INFLUENCE OF HYDROGEN-BONDS IN COMPLICATED COMPLEXES BY LOW-TEMPERATURE H-1-NMR SPECTROSCOPY
    GOLUBEV, NS
    DENISOV, GS
    JOURNAL OF MOLECULAR STRUCTURE, 1992, 270 : 263 - 276
  • [22] High-entropy solvent design enabling a universal electrolyte with a low freezing point for low-temperature aqueous batteries
    Ji, Huimin
    Xie, Chunlin
    Wu, Tingqing
    Wang, Hao
    Cai, Zhiwen
    Zhang, Qi
    Li, Wenbin
    Fu, Liang
    Li, Huanhuan
    Wang, Haiyan
    CHEMICAL COMMUNICATIONS, 2023, 59 (56) : 8715 - 8718
  • [23] Gel Electrolyte with the Sodium Dodecyl Sulfate Additive for Low-Temperature Zinc-Air Batteries
    Zhang, Weiqi
    Han, Xiaopeng
    Hu, Wenbin
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (32) : 38403 - 38411
  • [24] Low-temperature electrolyte for lithium and lithium-ion batteries
    Plichta, E.J.
    Behl, W.K.
    1600, Elsevier Sequoia SA, Switzerland (88):
  • [25] Inorganic Electrolyte for Low-Temperature Aqueous Sodium Ion Batteries
    Zhu, Kunjie
    Li, Zhaopeng
    Sun, Zhiqin
    Liu, Pei
    Jin, Ting
    Chen, Xuchun
    Li, Haixia
    Lu, Wenbo
    Jiao, Lifang
    SMALL, 2022, 18 (14)
  • [26] Low-Temperature Characterization of a Nonaqueous Liquid Electrolyte for Lithium Batteries
    Hickson, Darby T.
    Im, Julia
    Halat, David M.
    Karvat, Aakash
    Reimer, Jeffrey A.
    Balsara, Nitash P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (03)
  • [27] A low-temperature electrolyte for lithium and lithium-ion batteries
    Plichta, EJ
    Behl, WK
    JOURNAL OF POWER SOURCES, 2000, 88 (02) : 192 - 196
  • [28] EVALUATION OF ALLOY ANODES FOR ALUMINUM-AIR BATTERIES .3. MECHANISMS OF ACTIVATION, PASSIVATION, AND HYDROGEN EVOLUTION
    MACDONALD, DD
    REAL, S
    URQUIDIMACDONALD, M
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1988, 135 (10) : 2397 - 2409
  • [29] Surface Facet Engineering in Nanoporous Gold for Low-Loading Catalysts in Aluminum-Air Batteries
    Wang, Min
    Meng, Andrew C.
    Fu, Jintao
    Foucher, Alexandre C.
    Serra-Maia, Rui
    Stach, Eric A.
    Detsi, Eric
    Pikul, James H.
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (11) : 13097 - 13105
  • [30] Low-Temperature Performance of Al-air Batteries
    Zuo, Yuxin
    Yu, Ying
    Zuo, Chuncheng
    Ning, Chuanlong
    Liu, Hao
    Gu, Zhiqing
    Cao, Qianqian
    Shen, Ciming
    ENERGIES, 2019, 12 (04):