Gene expression prediction based on neighbour connection neural network utilizing gene interaction graphs

被引:3
作者
Li, Xuanyu [1 ,2 ]
Zhang, Xuan [3 ,4 ]
He, Wenduo [3 ,4 ]
Bu, Deliang [5 ]
Zhang, Sanguo [1 ,2 ]
机构
[1] Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R China
[2] Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing, Peoples R China
[3] Tsinghua Univ, Inst Network Sci & Cyberspace INSC, Beijing, Peoples R China
[4] Zhongguancun Lab, Beijing, Peoples R China
[5] Capital Univ Econ & Business, Sch Stat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
SIGNATURES; DATABASE; MAP;
D O I
10.1371/journal.pone.0281286
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Having observed that gene expressions have a correlation, the Library of Integrated Network-based Cell-Signature program selects 1000 landmark genes to predict the remaining gene expression value. Further works have improved the prediction result by using deep learning models. However, these models ignore the latent structure of genes, limiting the accuracy of the experimental results. We therefore propose a novel neural network named Neighbour Connection Neural Network(NCNN) to utilize the gene interaction graph information. Comparing to the popular GCN model, our model incorperates the graph information in a better manner. We validate our model under two different settings and show that our model promotes prediction accuracy comparing to the other models.
引用
收藏
页数:18
相关论文
共 36 条
[1]   The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans [J].
Ardlie, Kristin G. ;
DeLuca, David S. ;
Segre, Ayellet V. ;
Sullivan, Timothy J. ;
Young, Taylor R. ;
Gelfand, Ellen T. ;
Trowbridge, Casandra A. ;
Maller, Julian B. ;
Tukiainen, Taru ;
Lek, Monkol ;
Ward, Lucas D. ;
Kheradpour, Pouya ;
Iriarte, Benjamin ;
Meng, Yan ;
Palmer, Cameron D. ;
Esko, Tonu ;
Winckler, Wendy ;
Hirschhorn, Joel N. ;
Kellis, Manolis ;
MacArthur, Daniel G. ;
Getz, Gad ;
Shabalin, Andrey A. ;
Li, Gen ;
Zhou, Yi-Hui ;
Nobel, Andrew B. ;
Rusyn, Ivan ;
Wright, Fred A. ;
Lappalainen, Tuuli ;
Ferreira, Pedro G. ;
Ongen, Halit ;
Rivas, Manuel A. ;
Battle, Alexis ;
Mostafavi, Sara ;
Monlong, Jean ;
Sammeth, Michael ;
Mele, Marta ;
Reverter, Ferran ;
Goldmann, Jakob M. ;
Koller, Daphne ;
Guigo, Roderic ;
McCarthy, Mark I. ;
Dermitzakis, Emmanouil T. ;
Gamazon, Eric R. ;
Im, Hae Kyung ;
Konkashbaev, Anuar ;
Nicolae, Dan L. ;
Cox, Nancy J. ;
Flutre, Timothee ;
Wen, Xiaoquan ;
Stephens, Matthew .
SCIENCE, 2015, 348 (6235) :648-660
[2]  
Bertin P, 2020, Arxiv, DOI arXiv:1905.02295
[3]   Gene expression inference with deep learning [J].
Chen, Yifei ;
Li, Yi ;
Narayan, Rajiv ;
Subramanian, Aravind ;
Xie, Xiaohui .
BIOINFORMATICS, 2016, 32 (12) :1832-1839
[4]   Assessment of network module identification across complex diseases [J].
Choobdar, Sarvenaz ;
Ahsen, Mehmet E. ;
Crawford, Jake ;
Tomasoni, Mattia ;
Fang, Tao ;
Lamparter, David ;
Lin, Junyuan ;
Hescott, Benjamin ;
Hu, Xiaozhe ;
Mercer, Johnathan ;
Natoli, Ted ;
Narayan, Rajiv ;
Aicheler, Fabian ;
Amoroso, Nicola ;
Arenas, Alex ;
Azhagesan, Karthik ;
Baker, Aaron ;
Banf, Michael ;
Batzoglou, Serafim ;
Baudot, Anais ;
Bellotti, Roberto ;
Bergmann, Sven ;
Boroevich, Keith A. ;
Brun, Christine ;
Cai, Stanley ;
Caldera, Michael ;
Calderone, Alberto ;
Cesareni, Gianni ;
Chen, Weiqi ;
Chichester, Christine ;
Cowen, Lenore ;
Cui, Hongzhu ;
Phuong Dao ;
De Domenico, Manlio ;
Dhroso, Andi ;
Didier, Gilles ;
Divine, Mathew ;
del Sol, Antonio ;
Feng, Xuyang ;
Flores-Canales, Jose C. ;
Fortunato, Santo ;
Gitter, Anthony ;
Gorska, Anna ;
Guan, Yuanfang ;
Guenoche, Alain ;
Gomez, Sergio ;
Hamza, Hatem ;
Hartmann, Andras ;
He, Shan ;
Heijs, Anton .
NATURE METHODS, 2019, 16 (09) :843-+
[5]  
Crawford J., 2020, BIORXIV
[6]  
Defferrard M, 2016, ADV NEUR IN, V29
[7]   Understanding network concepts in modules [J].
Dong, Jun ;
Horvath, Steve .
BMC SYSTEMS BIOLOGY, 2007, 1
[8]  
Dutil F, 2018, Arxiv, DOI [arXiv:1806.06975, 10.48550/arXiv.1806.06975]
[9]   Combining mouse congenic strains and microarray gene expression analyses to study a complex trait: The NOD model of type 1 diabetes [J].
Eaves, IA ;
Wicker, LS ;
Ghandour, G ;
Lyons, PA ;
Peterson, LB ;
Todd, JA ;
Glynne, RJ .
GENOME RESEARCH, 2002, 12 (02) :232-243
[10]  
Gilmer J, 2017, PR MACH LEARN RES, V70