Assessment of structural, morphological, and optical properties of MnFe2O4 nanoparticles and MnFe2O4-layered 2D structures elaborated by e-beam technique

被引:2
|
作者
Nadafan, M. [1 ]
Puladrak, M. [1 ]
Majidi, R. [1 ]
Karimi, Z. [2 ]
Mousavi, M. [3 ]
机构
[1] Shahid Rajaee Teacher Training Univ, Fac Sci, Dept Phys, Tehran 1678815811, Iran
[2] Univ Technol, Dept Chem, Esfahan 8415683111, Iran
[3] Univ Bojnord, Fac Basic Sci, Dept Phys, Bojnord, Iran
关键词
Manganese ferrite; Thin film; Nanoparticles; Nonlinear refractive index; Nonlinear absorption; FERRITE; BEHAVIOR; NONLINEARITY; FILMS;
D O I
10.1007/s41779-023-00858-y
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this research, manganese ferrite (MnFe2O4) thin film and spherical nanoparticles were synthesized using the e-beam evaporation type of PVD and sol-gel method, respectively. Also, the effect of morphology on the structural, linear, and nonlinear optical properties of samples was investigated. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to assess the surface morphology of the specimens. The nonlinear optical (NLO) properties were also explored by the Z-scan technique utilizing CW laser at 532 nm. Different incident powers of laser were evaluated during nonlinearity assessments. In this research, MnFe2O4 nanoparticles showed higher nonlinear responses than MnFe2O4 thin film. The nonlinear refractive (NLR) indices and nonlinear absorption (NLA) coefficient of MnFe2O4 nanoparticles were 10(-4) cm(2)/W and 10 W/cm, respectively. The obtained optical nonlinearity can be assigned to the two-photon absorption and the self-focusing effect. In addition, thermal nonlinearity explains the changes in the value of beta and n(2) for MnFe2O4 nanoparticles and thin films. The higher nonlinearity in the nanoparticle sample than thin film can be due to nanoparticle clusters in solution of MnFe2O4. The good nonlinear optical properties of MnFe2O4 indicate that this material can be the promising potential in nonlinear photonic devices.
引用
收藏
页码:491 / 500
页数:10
相关论文
共 50 条
  • [1] Assessment of structural, morphological, and optical properties of MnFe2O4 nanoparticles and MnFe2O4-layered 2D structures elaborated by e-beam technique
    M. Nadafan
    M. Puladrak
    R. Majidi
    Z. Karimi
    M. Mousavi
    Journal of the Australian Ceramic Society, 2023, 59 : 491 - 500
  • [2] Evaluation of structural, optical, and magnetic properties of Gd doped MnFe2O4 nanoparticles
    Nguyen, Luu Huu
    Tam, Le The
    Nam, Nguyen Hoai
    Tung, Do Khanh
    Truong, Nguyen Xuan
    Tuan, Dinh Van
    Quynh, Nguyen Van
    Tri, Nguyen Le Minh
    Phong, Pham Thanh
    Nam, Pham Hong
    CERAMICS INTERNATIONAL, 2023, 49 (24) : 40981 - 40989
  • [3] NaAlH4 dehydrogenation properties enhanced by MnFe2O4 nanoparticles
    Wan, Qi
    Li, Ping
    Li, Ziliang
    Zhao, Kuifei
    Liu, Zhiwei
    Wang, Ling
    Zhai, Fuqiang
    Qu, Xuanhui
    Volinsky, Alex A.
    JOURNAL OF POWER SOURCES, 2014, 248 : 388 - 395
  • [4] Influence of annealing temperature on structural and magnetic properties of MnFe2O4 nanoparticles
    Surowiec, Zbigniew
    Wiertel, Marek
    Gac, Wojciech
    Budzynski, Mieczysiaw
    NUKLEONIKA, 2015, 60 (01) : 137 - 141
  • [5] Synthesis of MnFe2O4 nanoparticles by mechanochemical reaction
    Osmokrovic, P
    Jovalekic, C
    Manojlovic, D
    Pavlovic, MB
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2006, 8 (01): : 312 - 314
  • [6] MgH2 dehydrogenation properties improved by MnFe2O4 nanoparticles
    Li, Ping
    Wan, Qi
    Li, Ziliang
    Zhai, Fuqiang
    Li, Yunlong
    Cui, Liqun
    Qu, Xuanhui
    Volinsky, Alex A.
    JOURNAL OF POWER SOURCES, 2013, 239 : 201 - 206
  • [7] Synthesis and photothermal applications of MnFe2O4 nanoparticles
    Shahina, S. R.
    Vidya, S.
    JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2023, 59 (02) : 481 - 490
  • [8] Synthesis and Characterization of Photocatalytic MnFe2O4 Nanoparticles
    Desai, Harshal B.
    Hathiya, Laxmi J.
    Joshi, Hiren H.
    Tanna, Ashish R.
    MATERIALS TODAY-PROCEEDINGS, 2020, 21 : 1905 - 1910
  • [9] Superspin glass state in MnFe2O4 nanoparticles
    Aslibeiki, B.
    Kameli, P.
    Salamati, H.
    Eshraghi, M.
    Tahmasebi, T.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2010, 322 (19) : 2929 - 2934
  • [10] Theoretical investigation of MnFe2O4
    Elfalaky, A.
    Soliman, S.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 580 : 401 - 406