Data-driven Koopman fractional order PID control of a MEMS gyroscope using bat algorithm

被引:3
|
作者
Rahmani, Mehran [1 ]
Redkar, Sangram [1 ]
机构
[1] Arizona State Univ, Polytech Sch, Ira Fulton Sch Engn, Mesa, AZ 85212 USA
来源
NEURAL COMPUTING & APPLICATIONS | 2023年 / 35卷 / 13期
基金
美国国家科学基金会;
关键词
Bat algorithm; Fractional PID control; Koopman operator; Dynamic mode decomposition; MEMS gyroscope; Data-driven method; DESIGN; SYSTEMS;
D O I
10.1007/s00521-023-08220-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data-driven control methods are strong tools due to their predictions for controlling the systems with a nonlinear dynamic model. In this paper, the Koopman operator is used to linearize the nonlinear dynamic model. Generating the Koopman operator is the most important part of using the Koopman theory. Dynamic mode decomposition (DMD) is used to obtain eigenfunction for producing the Koopman operator. Then, a fractional order PID (FOPID) controller is applied to control the linearized dynamic model. A swarm intelligence bat optimization algorithm is utilized to tune the FOPID controller's parameters. Simulation results on micro-electromechanical systems (MEMS) gyroscope under conventional PID controller, FOPID, Koopman-based FOPID controller (Koopman-FOPID), and Koopman-FOPID control optimized by bat algorithm (Koopman-BAFOPID) show that the proposed Koopman-BAFOPID controller has better performance in comparison with three other controllers in terms of high tracking performance, low tracking error, and low control efforts.
引用
收藏
页码:9831 / 9840
页数:10
相关论文
共 50 条
  • [41] Fractional order IMC based PID controller design using Novel Bat optimization algorithm for TITO Process
    Lakshmanaprabu, S. K.
    Banu, Sabura U.
    Hemavathy, P. R.
    FIRST INTERNATIONAL CONFERENCE ON POWER ENGINEERING COMPUTING AND CONTROL (PECCON-2017 ), 2017, 117 : 1125 - 1133
  • [42] Control of Z-Axis MEMS Gyroscope Using Adaptive Fractional Order Dynamic Sliding Mode Approach
    Wang, Huimin
    Hua, Liang
    Guo, Yunxiang
    Lu, Cheng
    IEEE ACCESS, 2019, 7 : 133008 - 133016
  • [43] Data-driven distributed voltage control for microgrids: A Koopman-based approach
    Toro, Vladimir
    Tellez-Castro, Duvan
    Mojica-Nava, Eduardo
    Rakoto-Ravalontsalama, Naly
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 145
  • [44] Data-driven approximation of the Koopman generator: Model reduction, system identification, and control
    Klus, Stefan
    Nuske, Feliks
    Peitz, Sebastian
    Niemann, Jan-Hendrik
    Clementi, Cecilia
    Schuette, Christof
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 406
  • [45] Data-Driven Control of Nonlinear Systems: Learning Koopman Operators for Policy Gradient
    Zanini, Francesco
    Chiuso, Alessandro
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 6491 - 6496
  • [46] Data-driven safe control via finite-time Koopman identifier
    Mazouchi, Majid
    Modares, Hamidreza
    INTERNATIONAL JOURNAL OF CONTROL, 2024, 97 (10) : 2284 - 2297
  • [47] Tuning of Fractional Order PID Controller using CS Algorithm for Trajectory Tracking Control
    Ataslar-Ayyildiz, Banu
    Karahan, Oguzhan
    2018 6TH INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING & INFORMATION TECHNOLOGY (CEIT), 2018,
  • [48] Data-Driven Adaptive PID Control of Unknown Quadrotor UAVs
    Nan, Dong
    Li, Jiapeng
    Weng, Yongpeng
    Lian, Lian
    Yu, Cunqian
    Li, Shaowu
    PROCEEDINGS OF 2020 IEEE 9TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS'20), 2020, : 953 - 958
  • [49] Data-driven Estimation for a Region of Attraction for Transient Stability Using the Koopman Operator
    Zheng, Le
    Liu, Xin
    Xu, Yanhui
    Hu, Wei
    Liu, Chongru
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2023, 9 (04): : 1405 - 1413
  • [50] Data-Driven Control Algorithm for Snake Manipulator
    Hu, Kai
    Tian, Lang
    Weng, Chenghang
    Weng, Liguo
    Zang, Qiang
    Xia, Min
    Qin, Guodong
    APPLIED SCIENCES-BASEL, 2021, 11 (17):