Data-driven Koopman fractional order PID control of a MEMS gyroscope using bat algorithm

被引:3
|
作者
Rahmani, Mehran [1 ]
Redkar, Sangram [1 ]
机构
[1] Arizona State Univ, Polytech Sch, Ira Fulton Sch Engn, Mesa, AZ 85212 USA
基金
美国国家科学基金会;
关键词
Bat algorithm; Fractional PID control; Koopman operator; Dynamic mode decomposition; MEMS gyroscope; Data-driven method; DESIGN; SYSTEMS;
D O I
10.1007/s00521-023-08220-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data-driven control methods are strong tools due to their predictions for controlling the systems with a nonlinear dynamic model. In this paper, the Koopman operator is used to linearize the nonlinear dynamic model. Generating the Koopman operator is the most important part of using the Koopman theory. Dynamic mode decomposition (DMD) is used to obtain eigenfunction for producing the Koopman operator. Then, a fractional order PID (FOPID) controller is applied to control the linearized dynamic model. A swarm intelligence bat optimization algorithm is utilized to tune the FOPID controller's parameters. Simulation results on micro-electromechanical systems (MEMS) gyroscope under conventional PID controller, FOPID, Koopman-based FOPID controller (Koopman-FOPID), and Koopman-FOPID control optimized by bat algorithm (Koopman-BAFOPID) show that the proposed Koopman-BAFOPID controller has better performance in comparison with three other controllers in terms of high tracking performance, low tracking error, and low control efforts.
引用
收藏
页码:9831 / 9840
页数:10
相关论文
共 50 条
  • [41] Koopman-based data-driven control for continuous fluidized bed spray granulation
    Maksakov, Anton
    Palis, Stefan
    IFAC PAPERSONLINE, 2021, 54 (03): : 372 - 377
  • [42] Learning-based robust model predictive control with data-driven Koopman operators
    Wang, Meixi
    Lou, Xuyang
    Cui, Baotong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (09) : 3295 - 3321
  • [43] A data-driven Koopman model predictive control framework for nonlinear partial differential equations
    Arbabi, Hassan
    Korda, Milan
    Mezic, Igor
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 6409 - 6414
  • [44] Data-Driven Dynamic State Estimation Framework Using a Koopman Operator-Based Linear Predictor
    Yang, Deyou
    Gao, Han
    Chen, Zhe
    Lv, Yanling
    Wang, Lixin
    IEEE ACCESS, 2025, 13 : 31660 - 31670
  • [45] Koopman-Operator-Based Robust Data-Driven Control for Wheeled Mobile Robots
    Ren, Chao
    Jiang, Hongjian
    Li, Chunli
    Sun, Weichao
    Ma, Shugen
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2023, 28 (01) : 461 - 472
  • [46] Data-Driven Control Method Based on Koopman Operator for Suspension System of Maglev Train
    Han, Peichen
    Xu, Junqi
    Rong, Lijun
    Wang, Wen
    Sun, Yougang
    Lin, Guobin
    ACTUATORS, 2024, 13 (10)
  • [47] Learning-based robust model predictive control with data-driven Koopman operators
    Meixi Wang
    Xuyang Lou
    Baotong Cui
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 3295 - 3321
  • [48] Data-Driven Robust Output Regulation of Continuous-Time LTI Systems Using Koopman Operators
    Deutscher, Joachim
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (12) : 8774 - 8781
  • [49] Data-driven Koopman model predictive control for the integrated thermal management of electric vehicles
    Chen, Youyi
    Kwak, Kyoung Hyun
    Jung, Dewey D.
    Kim, Youngki
    CONTROL ENGINEERING PRACTICE, 2025, 160
  • [50] Improvement of predictive control algorithm based on fuzzy fractional order PID
    Shi, Rongzhen
    JOURNAL OF INTELLIGENT SYSTEMS, 2023, 32 (01)