Data-driven Koopman fractional order PID control of a MEMS gyroscope using bat algorithm

被引:3
|
作者
Rahmani, Mehran [1 ]
Redkar, Sangram [1 ]
机构
[1] Arizona State Univ, Polytech Sch, Ira Fulton Sch Engn, Mesa, AZ 85212 USA
基金
美国国家科学基金会;
关键词
Bat algorithm; Fractional PID control; Koopman operator; Dynamic mode decomposition; MEMS gyroscope; Data-driven method; DESIGN; SYSTEMS;
D O I
10.1007/s00521-023-08220-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data-driven control methods are strong tools due to their predictions for controlling the systems with a nonlinear dynamic model. In this paper, the Koopman operator is used to linearize the nonlinear dynamic model. Generating the Koopman operator is the most important part of using the Koopman theory. Dynamic mode decomposition (DMD) is used to obtain eigenfunction for producing the Koopman operator. Then, a fractional order PID (FOPID) controller is applied to control the linearized dynamic model. A swarm intelligence bat optimization algorithm is utilized to tune the FOPID controller's parameters. Simulation results on micro-electromechanical systems (MEMS) gyroscope under conventional PID controller, FOPID, Koopman-based FOPID controller (Koopman-FOPID), and Koopman-FOPID control optimized by bat algorithm (Koopman-BAFOPID) show that the proposed Koopman-BAFOPID controller has better performance in comparison with three other controllers in terms of high tracking performance, low tracking error, and low control efforts.
引用
收藏
页码:9831 / 9840
页数:10
相关论文
共 50 条
  • [31] Data-Driven Linear Koopman Embedding for Networked Systems: Model-Predictive Grid Control
    Hossain, Ramij Raja
    Adesunkanmi, Rahmat
    Kumar, Ratnesh
    IEEE SYSTEMS JOURNAL, 2023, 17 (03): : 4809 - 4820
  • [32] Stable data-driven Koopman predictive control: Concentrated solar collector field case study
    Gholaminejad, Tahereh
    Khaki-Sedigh, Ali
    IET CONTROL THEORY AND APPLICATIONS, 2023, 17 (09) : 1116 - 1131
  • [33] Control of Z-Axis MEMS Gyroscope Using Adaptive Fractional Order Dynamic Sliding Mode Approach
    Wang, Huimin
    Hua, Liang
    Guo, Yunxiang
    Lu, Cheng
    IEEE ACCESS, 2019, 7 : 133008 - 133016
  • [34] Data-driven approximation of the Koopman generator: Model reduction, system identification, and control
    Klus, Stefan
    Nuske, Feliks
    Peitz, Sebastian
    Niemann, Jan-Hendrik
    Clementi, Cecilia
    Schuette, Christof
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 406
  • [35] Data-driven distributed voltage control for microgrids: A Koopman-based approach
    Toro, Vladimir
    Tellez-Castro, Duvan
    Mojica-Nava, Eduardo
    Rakoto-Ravalontsalama, Naly
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 145
  • [36] Data-driven fault detection and isolation of nonlinear systems using deep learning for Koopman operator
    Bakhtiaridoust, Mohammadhosein
    Yadegar, Meysam
    Meskin, Nader
    ISA TRANSACTIONS, 2023, 134 : 200 - 211
  • [37] Data-Driven Fault Detection and Isolation for Multirotor System Using Koopman Operator
    Lee, Jayden Dongwoo
    Im, Sukjae
    Kim, Lamsu
    Ahn, Hyungjoo
    Bang, Hyochoong
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2024, 110 (03)
  • [38] Data-Driven Estimation of Region of Attraction Using Koopman Operator and Reverse Trajectory
    Velasco, Rober
    Boker, Almuatazbellah
    Mili, Lamine
    Abolmasoumi, Amir
    IFAC PAPERSONLINE, 2024, 58 (28): : 282 - 287
  • [39] Discrete-time fractional-order control based on data-driven equivalent model
    Treesatayapun, Chidentree
    Munoz-Vazquez, Aldo Jonathan
    APPLIED SOFT COMPUTING, 2020, 96
  • [40] Double Loop Neural Fractional-Order Terminal Sliding Mode Control of MEMS Gyroscope
    Wang, Zhe
    Fei, Juntao
    2021 SECOND INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION, CONTROL, ARTIFICIAL INTELLIGENCE, AND ROBOTICS (ICA-SYMP), 2021, : 60 - 63