Data-driven Koopman fractional order PID control of a MEMS gyroscope using bat algorithm

被引:3
|
作者
Rahmani, Mehran [1 ]
Redkar, Sangram [1 ]
机构
[1] Arizona State Univ, Polytech Sch, Ira Fulton Sch Engn, Mesa, AZ 85212 USA
来源
NEURAL COMPUTING & APPLICATIONS | 2023年 / 35卷 / 13期
基金
美国国家科学基金会;
关键词
Bat algorithm; Fractional PID control; Koopman operator; Dynamic mode decomposition; MEMS gyroscope; Data-driven method; DESIGN; SYSTEMS;
D O I
10.1007/s00521-023-08220-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data-driven control methods are strong tools due to their predictions for controlling the systems with a nonlinear dynamic model. In this paper, the Koopman operator is used to linearize the nonlinear dynamic model. Generating the Koopman operator is the most important part of using the Koopman theory. Dynamic mode decomposition (DMD) is used to obtain eigenfunction for producing the Koopman operator. Then, a fractional order PID (FOPID) controller is applied to control the linearized dynamic model. A swarm intelligence bat optimization algorithm is utilized to tune the FOPID controller's parameters. Simulation results on micro-electromechanical systems (MEMS) gyroscope under conventional PID controller, FOPID, Koopman-based FOPID controller (Koopman-FOPID), and Koopman-FOPID control optimized by bat algorithm (Koopman-BAFOPID) show that the proposed Koopman-BAFOPID controller has better performance in comparison with three other controllers in terms of high tracking performance, low tracking error, and low control efforts.
引用
收藏
页码:9831 / 9840
页数:10
相关论文
共 50 条
  • [31] A data-driven PID control system using particle swarm optimisation
    Tokuda, Makoto
    Yamamoto, Toru
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2011, 13 (1-2) : 88 - 96
  • [32] Data-Driven Batch Localization and SLAM Using Koopman Linearization
    Guo, Zi Cong
    Dumbgen, Frederike
    Forbes, James Richard
    Barfoot, Timothy D.
    IEEE TRANSACTIONS ON ROBOTICS, 2024, 40 : 3964 - 3983
  • [33] Optimal novel super-twisting PID sliding mode control of a MEMS gyroscope based on multi-objective bat algorithm
    Rahmani, Mehran
    Komijani, Hossein
    Ghanbari, Ahmad
    Ettefagh, Mir Mohammad
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2018, 24 (06): : 2835 - 2846
  • [34] Optimal novel super-twisting PID sliding mode control of a MEMS gyroscope based on multi-objective bat algorithm
    Mehran Rahmani
    Hossein Komijani
    Ahmad Ghanbari
    Mir Mohammad Ettefagh
    Microsystem Technologies, 2018, 24 : 2835 - 2846
  • [35] Data-Driven LPV Reference Tracking for a Control Moment Gyroscope
    Bloemers, Tom
    Toth, Roland
    Oomen, Tom
    IFAC PAPERSONLINE, 2019, 52 (28): : 134 - 139
  • [36] Data-driven discovery of Caputo fractional order systems
    Fan, Xuemeng
    Wu, Cong
    PHYSICA SCRIPTA, 2023, 98 (04)
  • [37] Data-Driven quasi-LPV Model Predictive Control Using Koopman Operator Techniques
    Cisneros, Pablo S. G.
    Datar, Adwait
    Goettsch, Patrick
    Werner, Herbert
    IFAC PAPERSONLINE, 2020, 53 (02): : 6062 - 6068
  • [38] Adaptive Frequency Control of Microgrid Based on Fractional Order Control and a Data-Driven Control With Stability Analysis
    Kazemi, Mohammad Verij
    Sadati, Seyed Jalil
    Gholamian, Seyed Asghar
    IEEE TRANSACTIONS ON SMART GRID, 2022, 13 (01) : 381 - 392
  • [39] Identification of Unstable Linear Systems using Data-driven Koopman Analysis
    Ketthong, Patinya
    Samkunta, Jirayu
    Nghia Thi Mai
    Hashikura, Kotaro
    Kamal, Md Abdus Samad
    Murakami, Iwanori
    Yamada, Kou
    2024 21ST INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY, ECTI-CON 2024, 2024,
  • [40] Development of a Fractional Order PID Controller for a Physical System based on Bat Inspired Algorithm
    Aboelela, Magdy A. S.
    2019 8TH INTERNATIONAL CONFERENCE ON MODERN CIRCUITS AND SYSTEMS TECHNOLOGIES (MOCAST), 2019,