Data-driven Koopman fractional order PID control of a MEMS gyroscope using bat algorithm

被引:3
|
作者
Rahmani, Mehran [1 ]
Redkar, Sangram [1 ]
机构
[1] Arizona State Univ, Polytech Sch, Ira Fulton Sch Engn, Mesa, AZ 85212 USA
基金
美国国家科学基金会;
关键词
Bat algorithm; Fractional PID control; Koopman operator; Dynamic mode decomposition; MEMS gyroscope; Data-driven method; DESIGN; SYSTEMS;
D O I
10.1007/s00521-023-08220-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data-driven control methods are strong tools due to their predictions for controlling the systems with a nonlinear dynamic model. In this paper, the Koopman operator is used to linearize the nonlinear dynamic model. Generating the Koopman operator is the most important part of using the Koopman theory. Dynamic mode decomposition (DMD) is used to obtain eigenfunction for producing the Koopman operator. Then, a fractional order PID (FOPID) controller is applied to control the linearized dynamic model. A swarm intelligence bat optimization algorithm is utilized to tune the FOPID controller's parameters. Simulation results on micro-electromechanical systems (MEMS) gyroscope under conventional PID controller, FOPID, Koopman-based FOPID controller (Koopman-FOPID), and Koopman-FOPID control optimized by bat algorithm (Koopman-BAFOPID) show that the proposed Koopman-BAFOPID controller has better performance in comparison with three other controllers in terms of high tracking performance, low tracking error, and low control efforts.
引用
收藏
页码:9831 / 9840
页数:10
相关论文
共 50 条
  • [21] Tuning of Fractional Order PID Controller using CS Algorithm for Trajectory Tracking Control
    Ataslar-Ayyildiz, Banu
    Karahan, Oguzhan
    2018 6TH INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING & INFORMATION TECHNOLOGY (CEIT), 2018,
  • [22] Koopman Operator Approach Data-Driven Optimal Control Algorithm for Autonomous Vehicles with various characteristics
    Kim, Hakjoo
    Lee, Hwan-Hong
    Kee, Seok-Cheol
    2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, : 244 - 251
  • [23] Data-driven optimal control under safety constraints using sparse Koopman approximation
    Yu, Hongzhe
    Moyalan, Joseph
    Vaidya, Umesh
    Chen, Yongxin
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 10574 - 10579
  • [24] Data-driven transient stability analysis using the Koopman operator
    Matavalam, Amar Ramapuram
    Hou, Boya
    Choi, Hyungjin
    Bose, Subhonmesh
    Vaidya, Umesh
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2024, 162
  • [25] Data-driven identification of vehicle dynamics using Koopman operator
    Cibulka, Vit
    Hanis, Tomas
    Hromcik, Martin
    PROCEEDINGS OF THE 2019 22ND INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC19), 2019, : 167 - 172
  • [26] Data-Driven Batch Localization and SLAM Using Koopman Linearization
    Guo, Zi Cong
    Dumbgen, Frederike
    Forbes, James Richard
    Barfoot, Timothy D.
    IEEE TRANSACTIONS ON ROBOTICS, 2024, 40 : 3964 - 3983
  • [27] Optimal novel super-twisting PID sliding mode control of a MEMS gyroscope based on multi-objective bat algorithm
    Rahmani, Mehran
    Komijani, Hossein
    Ghanbari, Ahmad
    Ettefagh, Mir Mohammad
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2018, 24 (06): : 2835 - 2846
  • [28] SE(3) Koopman-MPC: Data-driven Learning and Control of Quadrotor UAVs
    Narayanan, Sriram S. K. S.
    Tellez-Castro, Duvan
    Sutavani, Sarang
    Vaidya, Umesh
    IFAC PAPERSONLINE, 2023, 56 (03): : 607 - 612
  • [29] Data-Driven LPV Reference Tracking for a Control Moment Gyroscope
    Bloemers, Tom
    Toth, Roland
    Oomen, Tom
    IFAC PAPERSONLINE, 2019, 52 (28): : 134 - 139
  • [30] Data-Driven Koopman Model Predictive Control for Optimal Operation of High-Speed Trains
    Chen, Bin
    Huang, Zhiwu
    Zhang, Rui
    Liu, Weirong
    Li, Heng
    Wang, Jing
    Fan, Yunsheng
    Peng, Jun
    IEEE ACCESS, 2021, 9 : 82233 - 82248