Data-driven Koopman fractional order PID control of a MEMS gyroscope using bat algorithm

被引:3
|
作者
Rahmani, Mehran [1 ]
Redkar, Sangram [1 ]
机构
[1] Arizona State Univ, Polytech Sch, Ira Fulton Sch Engn, Mesa, AZ 85212 USA
来源
NEURAL COMPUTING & APPLICATIONS | 2023年 / 35卷 / 13期
基金
美国国家科学基金会;
关键词
Bat algorithm; Fractional PID control; Koopman operator; Dynamic mode decomposition; MEMS gyroscope; Data-driven method; DESIGN; SYSTEMS;
D O I
10.1007/s00521-023-08220-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data-driven control methods are strong tools due to their predictions for controlling the systems with a nonlinear dynamic model. In this paper, the Koopman operator is used to linearize the nonlinear dynamic model. Generating the Koopman operator is the most important part of using the Koopman theory. Dynamic mode decomposition (DMD) is used to obtain eigenfunction for producing the Koopman operator. Then, a fractional order PID (FOPID) controller is applied to control the linearized dynamic model. A swarm intelligence bat optimization algorithm is utilized to tune the FOPID controller's parameters. Simulation results on micro-electromechanical systems (MEMS) gyroscope under conventional PID controller, FOPID, Koopman-based FOPID controller (Koopman-FOPID), and Koopman-FOPID control optimized by bat algorithm (Koopman-BAFOPID) show that the proposed Koopman-BAFOPID controller has better performance in comparison with three other controllers in terms of high tracking performance, low tracking error, and low control efforts.
引用
收藏
页码:9831 / 9840
页数:10
相关论文
共 50 条
  • [21] Optimal DMD Koopman Data-Driven Control of a Worm Robot
    Rahmani, Mehran
    Redkar, Sangram
    BIOMIMETICS, 2024, 9 (11)
  • [22] Data-driven control framework using fractional order singular optimal control and optimized metaheuristic algorithms
    Dehnavi, Vahid Safari
    Shafiee, Masoud
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 120
  • [23] Local Koopman Operators for Data-Driven Control of Robotic Systems
    Mamakoukas, Giorgos
    Castano, Maria
    Tan, Xiaobo
    Murphey, Todd
    ROBOTICS: SCIENCE AND SYSTEMS XV, 2019,
  • [24] Robust Model Predictive Control with Data-Driven Koopman Operators
    Mamakoukas, Giorgos
    Di Cairano, Stefano
    Vinod, Abraham P.
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 3885 - 3892
  • [25] Koopman Operator Approach Data-Driven Optimal Control Algorithm for Autonomous Vehicles with various characteristics
    Kim, Hakjoo
    Lee, Hwan-Hong
    Kee, Seok-Cheol
    2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, : 244 - 251
  • [26] Optimal Control of Quadrotor Attitude System Using Data-driven Approximation of Koopman Operator
    Zheng, Ketong
    Huang, Peng
    Fettweis, Gerhard P.
    IFAC PAPERSONLINE, 2023, 56 (02): : 834 - 840
  • [27] Data-driven optimal control under safety constraints using sparse Koopman approximation
    Yu, Hongzhe
    Moyalan, Joseph
    Vaidya, Umesh
    Chen, Yongxin
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 10574 - 10579
  • [28] Data-driven acoustic control of a spherical bubble using a Koopman linear quadratic regulator
    Gibson, Andrew J.
    Yee, Xin C.
    Calvisi, Michael L.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2024, 156 (01): : 229 - 243
  • [29] Data-driven transient stability analysis using the Koopman operator
    Matavalam, Amar Ramapuram
    Hou, Boya
    Choi, Hyungjin
    Bose, Subhonmesh
    Vaidya, Umesh
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2024, 162
  • [30] Data-driven identification of vehicle dynamics using Koopman operator
    Cibulka, Vit
    Hanis, Tomas
    Hromcik, Martin
    PROCEEDINGS OF THE 2019 22ND INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC19), 2019, : 167 - 172