Data-driven Koopman fractional order PID control of a MEMS gyroscope using bat algorithm

被引:5
作者
Rahmani, Mehran [1 ]
Redkar, Sangram [1 ]
机构
[1] Arizona State Univ, Polytech Sch, Ira Fulton Sch Engn, Mesa, AZ 85212 USA
基金
美国国家科学基金会;
关键词
Bat algorithm; Fractional PID control; Koopman operator; Dynamic mode decomposition; MEMS gyroscope; Data-driven method; DESIGN; SYSTEMS;
D O I
10.1007/s00521-023-08220-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data-driven control methods are strong tools due to their predictions for controlling the systems with a nonlinear dynamic model. In this paper, the Koopman operator is used to linearize the nonlinear dynamic model. Generating the Koopman operator is the most important part of using the Koopman theory. Dynamic mode decomposition (DMD) is used to obtain eigenfunction for producing the Koopman operator. Then, a fractional order PID (FOPID) controller is applied to control the linearized dynamic model. A swarm intelligence bat optimization algorithm is utilized to tune the FOPID controller's parameters. Simulation results on micro-electromechanical systems (MEMS) gyroscope under conventional PID controller, FOPID, Koopman-based FOPID controller (Koopman-FOPID), and Koopman-FOPID control optimized by bat algorithm (Koopman-BAFOPID) show that the proposed Koopman-BAFOPID controller has better performance in comparison with three other controllers in terms of high tracking performance, low tracking error, and low control efforts.
引用
收藏
页码:9831 / 9840
页数:10
相关论文
共 44 条
[1]   The Grunwald-Letnikov Fractional-Order Derivative with Fixed Memory Length [J].
Abdelouahab, Mohammed-Salah ;
Hamri, Nasr-Eddine .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (02) :557-572
[2]   Data-Driven Control of Soft Robots Using Koopman Operator Theory [J].
Bruder, Daniel ;
Fu, Xun ;
Gillespie, R. Brent ;
Remy, C. David ;
Vasudevan, Ram .
IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (03) :948-961
[3]   Optimal design and tuning of novel fractional order PID power system stabilizer using a new metaheuristic Bat algorithm [J].
Chaib, Lakhdar ;
Choucha, Abdelghani ;
Arif, Salem .
AIN SHAMS ENGINEERING JOURNAL, 2017, 8 (02) :113-125
[4]   Semiclosed Greenhouse Climate Control Under Uncertainty via Machine Learning and Data-Driven Robust Model Predictive Control [J].
Chen, Wei-Han ;
You, Fengqi .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2022, 30 (03) :1186-1197
[5]  
Classen J, 2007, ADVANCED MICROSYSTEMS FOR AUTOMOTIVE APPLICATIONS 2007, P291
[7]   Modeling and neural sliding mode control of mems triaxial gyroscope [J].
Fang, Yunmei ;
Fu, Wen ;
Ding, Hongfei ;
Fei, Juntao .
ADVANCES IN MECHANICAL ENGINEERING, 2022, 14 (03)
[8]  
Fei JT, 2016, JOINT INT CONF SOFT, P16, DOI [10.1109/SCIS-ISIS.2016.0018, 10.1109/SCIS&ISIS.2016.101]
[9]   Data-driven model-free resilient speed control of an autonomous surface vehicle in the presence of actuator anomalies [J].
Gao, Shengnan ;
Liu, Lu ;
Wang, Haoliang ;
Wang, Anqing .
ISA TRANSACTIONS, 2022, 127 :251-258
[10]   Bilinearization, Reachability, and Optimal Control of Control-Affine Nonlinear Systems: A Koopman Spectral Approach [J].
Goswami, Debdipta ;
Paley, Derek A. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (06) :2715-2728