Data-driven Koopman fractional order PID control of a MEMS gyroscope using bat algorithm

被引:3
|
作者
Rahmani, Mehran [1 ]
Redkar, Sangram [1 ]
机构
[1] Arizona State Univ, Polytech Sch, Ira Fulton Sch Engn, Mesa, AZ 85212 USA
来源
NEURAL COMPUTING & APPLICATIONS | 2023年 / 35卷 / 13期
基金
美国国家科学基金会;
关键词
Bat algorithm; Fractional PID control; Koopman operator; Dynamic mode decomposition; MEMS gyroscope; Data-driven method; DESIGN; SYSTEMS;
D O I
10.1007/s00521-023-08220-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data-driven control methods are strong tools due to their predictions for controlling the systems with a nonlinear dynamic model. In this paper, the Koopman operator is used to linearize the nonlinear dynamic model. Generating the Koopman operator is the most important part of using the Koopman theory. Dynamic mode decomposition (DMD) is used to obtain eigenfunction for producing the Koopman operator. Then, a fractional order PID (FOPID) controller is applied to control the linearized dynamic model. A swarm intelligence bat optimization algorithm is utilized to tune the FOPID controller's parameters. Simulation results on micro-electromechanical systems (MEMS) gyroscope under conventional PID controller, FOPID, Koopman-based FOPID controller (Koopman-FOPID), and Koopman-FOPID control optimized by bat algorithm (Koopman-BAFOPID) show that the proposed Koopman-BAFOPID controller has better performance in comparison with three other controllers in terms of high tracking performance, low tracking error, and low control efforts.
引用
收藏
页码:9831 / 9840
页数:10
相关论文
共 50 条
  • [1] Data-driven Koopman fractional order PID control of a MEMS gyroscope using bat algorithm
    Mehran Rahmani
    Sangram Redkar
    Neural Computing and Applications, 2023, 35 : 9831 - 9840
  • [2] Fractional robust data-driven control of nonlinear MEMS gyroscope
    Rahmani, Mehran
    Redkar, Sangram
    NONLINEAR DYNAMICS, 2023, 111 (21) : 19901 - 19910
  • [3] Fractional robust data-driven control of nonlinear MEMS gyroscope
    Mehran Rahmani
    Sangram Redkar
    Nonlinear Dynamics, 2023, 111 : 19901 - 19910
  • [4] Deep neural data-driven Koopman fractional control of a worm robot
    Rahmani, Mehran
    Redkar, Sangram
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 256
  • [5] DATA-DRIVEN CONTROL OF THE CHEMOSTAT USING THE KOOPMAN OPERATOR THEORY
    Dekhici, Benaissa
    Benyahia, Boumediene
    Cherki, Brahim
    UPB Scientific Bulletin, Series C: Electrical Engineering and Computer Science, 2023, 85 (02): : 137 - 150
  • [6] DATA-DRIVEN CONTROL OF THE CHEMOSTAT USING THE KOOPMAN OPERATOR THEORY
    Dekhici, Benaissa
    Benyahia, Boumediene
    Cherki, Brahim
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2023, 85 (02): : 137 - 150
  • [7] Data-Driven Fractional-Order PID Controller Tuning for Liquid Slosh Suppression Using Marine Predators Algorithm
    Tumari, Mohd Zaidi Mohd
    Ahmad, Mohd Ashraf
    Suid, Mohd Helmi
    Ghazali, Mohd Riduwan
    Saat, Shahrizal
    TRAITEMENT DU SIGNAL, 2023, 40 (03) : 885 - 894
  • [8] Data-driven discovery of Koopman eigenfunctions for control
    Kaiser, Eurika
    Kutz, J. Nathan
    Brunton, Steven L.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (03):
  • [9] Data-Driven Robust Servo Tuning Method Using Fractional-Order PID Controller
    Jinai, K.
    Kawaguchi, N.
    Arrieta, O.
    Sato, T.
    IFAC PAPERSONLINE, 2024, 58 (07): : 436 - 441
  • [10] Fractional-order PID control of a MIMO distillation column process using improved bat algorithm
    Vahab Haji Haji
    Concepción A. Monje
    Soft Computing, 2019, 23 : 8887 - 8906