Group classification of one-dimensional equations of relativistic gas dynamics

被引:0
作者
Nakpim, W. [1 ]
Meleshko, S. V. [2 ]
机构
[1] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
[2] Suranaree Univ Technol, Inst Sci, Sch Math, Nakhon Ratchasima 30000, Thailand
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2023年 / 118卷
基金
俄罗斯科学基金会;
关键词
Relativistic gas dynamics; Group classification; Invariant solutions;
D O I
10.1016/j.cnsns.2022.107054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Analysis of the one-dimensional relativistic gas dynamics equations is presented in the paper. The equations contain the internal energy as an arbitrary element. Depending on the form of this function the equations have different symmetries. Complete group classification of the one-dimensional relativistic gas dynamics equations with respect to an admitted Lie group is obtained in the present paper. The classification divides the equations into several classes. Analysis of invariant solutions is also provided.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 14 条
[1]  
Anile A., 1989, Cambridge Monographs on Mathematical Physics
[2]  
Hearn A.H., 1987, REDUCE USERS MANUAL
[3]  
Ibragimov NH, 1996, CRC HDB LIE GROUP AN, V1
[4]  
Landau L.D., 1987, Fluid Mechanics, V2nd edn.
[5]  
Meleshko S.V., 2005, Methods for Constructing Exact Solutions of Partial Differential Equations: Mathematical and Analytical Techniques with Applications to Engineering, V2005th edn
[6]  
Ovsiannikov L., 2014, GROUP ANAL DIFFERENT
[7]  
Ovsiannikov L.V., 1994, J. Appl. Math. Mech., V58, P30
[8]  
Ovsiannikov L.V., 2003, Lectures on Basis of the Gas Dynamics, Vsecond
[9]  
Ovsiannikov LV, 1967, GROUP PROPERTIES DIF
[10]  
Ovsyannikov LV, 1999, PMM-J APPL MATH MEC+, V63, P349, DOI 10.1016/S0021-8928(99)00046-5