Multi-chimera states in a higher order network of FitzHugh-Nagumo oscillators

被引:46
|
作者
Wang, Zhen [1 ,2 ]
Chen, Mingshu [3 ]
Xi, Xiaojian [2 ]
Tian, Huaigu [2 ]
Yang, Rui [2 ]
机构
[1] Yanan Univ, Sch Math & Comp Sci, Yanan 716000, Peoples R China
[2] Xijing Univ, Shaanxi Int Joint Res Ctr Appl Technol Controllabl, Xian 710123, Peoples R China
[3] Xian Univ Technol, Sch Elect Engn, Xian 710061, Peoples R China
基金
中国国家自然科学基金;
关键词
PHASE SYNCHRONIZATION; MODEL;
D O I
10.1140/epjs/s11734-024-01143-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A chimera state represents a distinct configuration within interconnected oscillatory networks comprising both coherent and incoherent oscillators. In specific scenarios, multiple sets of synchronized systems can coexist, forming what is termed a multi-chimera state. This phenomenon has previously been documented in a network of FitzHugh-Nagumo systems under strong coupling conditions. In this study, we explore the impact of higher order interactions on the manifestation of multi-chimera states and their respective domains. The assessment involves utilizing measures of incoherence and discontinuity. The findings indicate that higher order networks are more prone to exhibiting multi-chimera states. Additionally, complete coherence is achieved with lower first-order coupling strength. Furthermore, the higher order network displays instances of imperfect chimera and imperfect synchronization.
引用
收藏
页码:779 / 786
页数:8
相关论文
共 24 条
  • [1] Dynamics of delayed and diffusive FitzHugh-Nagumo network
    Gao, Shaoyang
    Shen, Jianwei
    Hu, Xiaoyan
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2024,
  • [2] The impact of memristive coupling initial states on travelling waves in an ensemble of the FitzHugh-Nagumo oscillators
    Korneev, I. A.
    Semenov, V. V.
    Slepnev, A. V.
    Vadivasova, T. E.
    CHAOS SOLITONS & FRACTALS, 2021, 147
  • [3] Numerical bifurcation analysis of two coupled FitzHugh-Nagumo oscillators
    Hoff, Anderson
    dos Santos, Juliana V.
    Manchein, Cesar
    Albuquerque, Holokx A.
    EUROPEAN PHYSICAL JOURNAL B, 2014, 87 (07)
  • [4] Hopf bifurcations in a network of FitzHugh-Nagumo biological neurons
    Popov, Igor Y.
    Fedorov, Evgeny G.
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (03) : 847 - 866
  • [5] Synchronization and chimeras in a network of photosensitive FitzHugh-Nagumo neurons
    Hussain, Iqtadar
    Jafari, Sajad
    Ghosh, Dibakar
    Perc, Matjaz
    NONLINEAR DYNAMICS, 2021, 104 (03) : 2711 - 2721
  • [6] Wave-driven phase wave patterns in a ring of FitzHugh-Nagumo oscillators
    Cebrian-Lacasa, Daniel
    Leda, Marcin
    Goryachev, Andrew B.
    Gelens, Lendert
    PHYSICAL REVIEW E, 2024, 110 (05)
  • [7] Spiral wave chimera in two-dimensional nonlocally coupled Fitzhugh-Nagumo systems
    Guo, Shuangjian
    Dai, Qionglin
    Cheng, Hongyan
    Li, Haihong
    Xie, Fagen
    Yang, Junzhong
    CHAOS SOLITONS & FRACTALS, 2018, 114 : 394 - 399
  • [8] Network resilience of FitzHugh-Nagumo neurons in the presence of nonequilibrium dynamics
    Bhandary, Subhendu
    Kaur, Taranjot
    Banerjee, Tanmoy
    Dutta, Partha Sharathi
    PHYSICAL REVIEW E, 2021, 103 (02)
  • [9] Synchronization of Fitzhugh-Nagumo Neural Network in External Electrical Fields
    Men Cong
    Wang Jiang
    Deng Bin
    Wei Xi-Le
    Che Yan-Qiu
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 5165 - 5170
  • [10] Spatiotemporal dynamics of a modified FitzHugh-Nagumo neuronal network with time delays
    Ji, Yansu
    Mao, Xiaochen
    NONLINEAR DYNAMICS, 2024, 112 (09) : 7571 - 7582