New family of Bernoulli-type polynomials and some application

被引:0
作者
Alejandro, Urieles [1 ]
William, Ramirez [2 ,3 ]
Roberto, Herrera [1 ]
Maria Jose, Ortega [2 ]
机构
[1] Univ Atlantico, Programa Matemat, Km 7 Via Pto Colombia, Barranquilla, Colombia
[2] Univ Costa Barranquilla, Dept Ciencias Nat & Exactas, Barranquilla, Colombia
[3] Int Telemat Univ Uninettuno, Sect Math, Corso Vittorio Emanuele II 39, I-00186 Rome, Italy
来源
DOLOMITES RESEARCH NOTES ON APPROXIMATION | 2023年 / 16卷 / 01期
关键词
Bernoulli polynomials; generalized Bernoulli polynomials; Bernoulli polynomials matrix; Pascal matrix; MATRIX;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a new family of generalized Bernoulli-type polynomials, as well as its numbers. In addition, we obtain some results such as algebraic and differential properties for this new family of Bernoulli-type polynomials. Likewise, the generalized Bernoulli-type polynomials matrix R-(alpha)(x) is introduced. We deduce some product formulae for R-(alpha))( x) and also, the inverse of the Bernoullitype matrix R is determined. Furthermore, we establish some explicit expressions for the Bernoullitype polynomial matrix R(x), which involve the generalized Pascal matrix and finally we study the summation formula of Euler-Maclaurin type and the Riemann zeta function applied to these Bernoullitype polynomials.
引用
收藏
页码:20 / 30
页数:11
相关论文
共 50 条
  • [41] Hecke operators type and generalized Apostol-Bernoulli polynomials
    Aykut Ahmet Aygunes
    Abdelmejid Bayad
    Yilmaz Simsek
    Fixed Point Theory and Applications, 2013
  • [42] Hecke operators type and generalized Apostol-Bernoulli polynomials
    Aygunes, Aykut Ahmet
    Bayad, Abdelmejid
    Simsek, Yilmaz
    FIXED POINT THEORY AND APPLICATIONS, 2013,
  • [43] Mixed-Type Hypergeometric Bernoulli-Gegenbauer Polynomials
    Peralta, Dionisio
    Quintana, Yamilet
    Wani, Shahid Ahmad
    MATHEMATICS, 2023, 11 (18)
  • [44] BARNES-TYPE DEGENERATE BERNOULLI AND EULER MIXED-TYPE POLYNOMIALS
    Kim, Taekyun
    Kim, Dae San
    Kwon, Hyuckin
    Mansour, Toufik
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (07) : 1273 - 1287
  • [45] q-EXTENSIONS OF SOME RELATIONSHIPS BETWEEN THE BERNOULLI AND EULER POLYNOMIALS
    Luo, Qiu-Ming
    Srivastava, H. M.
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (01): : 241 - 257
  • [46] Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials
    Luo, QM
    Srivastava, HM
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 308 (01) : 290 - 302
  • [47] Bernoulli polynomials for a new subclass of Te-univalent functions
    Saravanan, G.
    Baskaran, S.
    Vanithakumari, B.
    Alnaji, Lulah
    Shaba, Timilehin Gideon
    Al-Shbeil, Isra
    Lupas, Alina Alp
    HELIYON, 2024, 10 (14)
  • [48] A new generalization of the Genocchi numbers and its consequence on the Bernoulli polynomials
    Farhi, Bakir
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2022, 13 (04) : 18 - 28
  • [49] RATE OF CONVERGENCE BY KANTOROVICH TYPE OPERATORS INVOLVING ADJOINT BERNOULLI POLYNOMIALS
    Yilmaz, Mine Menekse
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2023, 114 (128): : 51 - 62
  • [50] A new class of generalized Apostol-Bernoulli polynomials and some analogues of the Srivastava-Pinter addition theorem
    Tremblay, R.
    Gaboury, S.
    Fugere, B. -J.
    APPLIED MATHEMATICS LETTERS, 2011, 24 (11) : 1888 - 1893