New family of Bernoulli-type polynomials and some application

被引:0
作者
Alejandro, Urieles [1 ]
William, Ramirez [2 ,3 ]
Roberto, Herrera [1 ]
Maria Jose, Ortega [2 ]
机构
[1] Univ Atlantico, Programa Matemat, Km 7 Via Pto Colombia, Barranquilla, Colombia
[2] Univ Costa Barranquilla, Dept Ciencias Nat & Exactas, Barranquilla, Colombia
[3] Int Telemat Univ Uninettuno, Sect Math, Corso Vittorio Emanuele II 39, I-00186 Rome, Italy
来源
DOLOMITES RESEARCH NOTES ON APPROXIMATION | 2023年 / 16卷 / 01期
关键词
Bernoulli polynomials; generalized Bernoulli polynomials; Bernoulli polynomials matrix; Pascal matrix; MATRIX;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a new family of generalized Bernoulli-type polynomials, as well as its numbers. In addition, we obtain some results such as algebraic and differential properties for this new family of Bernoulli-type polynomials. Likewise, the generalized Bernoulli-type polynomials matrix R-(alpha)(x) is introduced. We deduce some product formulae for R-(alpha))( x) and also, the inverse of the Bernoullitype matrix R is determined. Furthermore, we establish some explicit expressions for the Bernoullitype polynomial matrix R(x), which involve the generalized Pascal matrix and finally we study the summation formula of Euler-Maclaurin type and the Riemann zeta function applied to these Bernoullitype polynomials.
引用
收藏
页码:20 / 30
页数:11
相关论文
共 17 条
[1]  
Bedoya D, 2023, DOLOMIT RES NOTES AP, V16, P10
[2]   New Classes of Degenerate Unified Polynomials [J].
Bedoya, Daniel ;
Cesarano, Clemente ;
Diaz, Stiven ;
Ramirez, William .
AXIOMS, 2023, 12 (01)
[3]   PASCAL MATRICES [J].
CALL, GS ;
VELLEMAN, DJ .
AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (04) :372-376
[4]   On Apostol-Type Hermite Degenerated Polynomials [J].
Cesarano, Clemente ;
Ramirez, William ;
Diaz, Stiven ;
Shamaoon, Adnan ;
Khan, Waseem Ahmad .
MATHEMATICS, 2023, 11 (08)
[5]  
Cesarano C, 2022, DOLOMIT RES NOTES AP, V15, P1
[6]  
Lampret V., 2001, Math. Mag, V74, P109
[7]   Some identities on the Bernoulli, Euler and Genocchi polynomials via power sums and alternate power sums [J].
Liu, Hongmei ;
Wang, Weiping .
DISCRETE MATHEMATICS, 2009, 309 (10) :3346-3363
[8]  
Quintana Y., 2019, Math. Repor, V21
[9]  
Ramirez William, 2022, WSEAS Transactions on Mathematics, P604, DOI 10.37394/23206.2022.21.69
[10]   Some new classes of degenerated generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials [J].
Ramirez, W. ;
Cesarano, C. .
CARPATHIAN MATHEMATICAL PUBLICATIONS, 2022, 14 (02) :354-363