Metallic Structures for Tangent Bundles over Almost Quadratic φ-Manifolds

被引:1
作者
Khan, Mohammad Nazrul Islam [1 ]
Chaubey, Sudhakar Kumar [2 ]
Fatima, Nahid [3 ]
Al Eid, Afifah [3 ]
机构
[1] Qassim Univ, Coll Comp, Dept Comp Engn, Buraydah 51452, Saudi Arabia
[2] Univ Technol & Appl Sci, Dept Informat Technol, Sect Math, POB 77, Shinas 324, Oman
[3] Prince Sultan Univ, Dept Math & Sci, Riyadh 11586, Saudi Arabia
关键词
metallic structure; tangent bundle; partial differential equations; nijenhuis tensor; mathematical operators; lie derivatives; SHAPED HYPERSURFACES; LIFTS;
D O I
10.3390/math11224683
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper aims to explore the metallic structure J(2 )= pJ + qI, where p and q are natural numbers, using complete and horizontal lifts on the tangent bundle TM over almost quadratic phi-structures (briefly, (phi,xi,eta)). Tensor fields F and F* are defined on TM, and it is shown that they are metallic structures over (phi,xi,eta). Next, the fundamental 2-form Omega and its derivative d Omega, with the help of complete lift on TM over (phi,xi,eta), are evaluated. Furthermore, the integrability conditions and expressions of the Lie derivative of metallic structures F and F* are determined using complete and horizontal lifts on TM over (phi,xi,eta), respectively. Finally, we prove the existence of almost quadratic phi-structures on TM with non-trivial examples.
引用
收藏
页数:16
相关论文
共 35 条
[1]  
Altunbas M, 2019, J MATH PHYS ANAL GEO, V15, P435
[2]   Remarks about the Kaluza-Klein metric on tangent bundle [J].
Altunbas, Murat ;
Bilen, Lokman ;
Gezer, Aydin .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (03)
[3]  
Azami S, 2019, Arxiv, DOI arXiv:1904.12637
[4]   General Natural Metallic Structure on Tangent Bundle [J].
Azami, Shahroud .
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A1) :81-88
[5]  
Blair D. E., 1976, LECT NOTES MATH, V509
[6]   Categorization of fractal plants [J].
Chandra, Munesh ;
Rani, Mamta .
CHAOS SOLITONS & FRACTALS, 2009, 41 (03) :1442-1447
[7]   Generalized Wintgen inequality for slant submanifolds in metallic Riemannian space forms [J].
Choudhary, Majid Ali ;
Blaga, Adara M. .
JOURNAL OF GEOMETRY, 2021, 112 (02)
[8]  
Das L. S., 2005, DIFFERENTIAL GEOMETR, V7, P34
[9]  
Davies E.T., 1969, Annali di Mat, V81, P193, DOI [10.1007/BF02413503, DOI 10.1007/BF02413503]
[10]   The metallic means family and multifractal spectra [J].
de Spinadel, VW .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (06) :721-745