Metallic Structures for Tangent Bundles over Almost Quadratic φ-Manifolds

被引:1
作者
Khan, Mohammad Nazrul Islam [1 ]
Chaubey, Sudhakar Kumar [2 ]
Fatima, Nahid [3 ]
Al Eid, Afifah [3 ]
机构
[1] Qassim Univ, Coll Comp, Dept Comp Engn, Buraydah 51452, Saudi Arabia
[2] Univ Technol & Appl Sci, Dept Informat Technol, Sect Math, POB 77, Shinas 324, Oman
[3] Prince Sultan Univ, Dept Math & Sci, Riyadh 11586, Saudi Arabia
关键词
metallic structure; tangent bundle; partial differential equations; nijenhuis tensor; mathematical operators; lie derivatives; SHAPED HYPERSURFACES; LIFTS;
D O I
10.3390/math11224683
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper aims to explore the metallic structure J(2 )= pJ + qI, where p and q are natural numbers, using complete and horizontal lifts on the tangent bundle TM over almost quadratic phi-structures (briefly, (phi,xi,eta)). Tensor fields F and F* are defined on TM, and it is shown that they are metallic structures over (phi,xi,eta). Next, the fundamental 2-form Omega and its derivative d Omega, with the help of complete lift on TM over (phi,xi,eta), are evaluated. Furthermore, the integrability conditions and expressions of the Lie derivative of metallic structures F and F* are determined using complete and horizontal lifts on TM over (phi,xi,eta), respectively. Finally, we prove the existence of almost quadratic phi-structures on TM with non-trivial examples.
引用
收藏
页数:16
相关论文
共 35 条
  • [1] Altunbas M, 2019, J MATH PHYS ANAL GEO, V15, P435
  • [2] Remarks about the Kaluza-Klein metric on tangent bundle
    Altunbas, Murat
    Bilen, Lokman
    Gezer, Aydin
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (03)
  • [3] Azami S, 2019, Arxiv, DOI [arXiv:1904.12637, 10.48550/arXiv.1904.12637, DOI 10.48550/ARXIV.1904.12637]
  • [4] General Natural Metallic Structure on Tangent Bundle
    Azami, Shahroud
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A1): : 81 - 88
  • [5] Blair D. E., 1976, Lecture Notes in Math., V509
  • [6] Categorization of fractal plants
    Chandra, Munesh
    Rani, Mamta
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 41 (03) : 1442 - 1447
  • [7] Generalized Wintgen inequality for slant submanifolds in metallic Riemannian space forms
    Choudhary, Majid Ali
    Blaga, Adara M.
    [J]. JOURNAL OF GEOMETRY, 2021, 112 (02)
  • [8] Das L.S., 2005, Differential Geometry-Dynamical Systems, V7, P34
  • [9] Davis E.T., 1969, Ann. Mat. Pura Appl, V81, P193, DOI [10.1007/BF02413503, DOI 10.1007/BF02413503]
  • [10] The metallic means family and multifractal spectra
    de Spinadel, VW
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (06) : 721 - 745