Stability of estimates for fundamental solutions under Feynman-Kac perturbations for symmetric Markov processes

被引:1
作者
Kim, Daehong [1 ]
Kim, Panki [2 ,3 ]
Kuwae, Kazuhiro [4 ]
机构
[1] Technol Kumamoto Univ, Fac Adv Sci, Kumamoto 8608555, Japan
[2] Seoul Natl Univ, Dept Math Sci, Bldg 27,1 Gwanak Ro, Seoul 08826, South Korea
[3] Seoul Natl Univ, Res Inst Math, Bldg 27,1 Gwanak Ro, Seoul 08826, South Korea
[4] Fukuoka Univ, Dept Appl Math, Fukuoka 8140180, Japan
基金
新加坡国家研究基金会;
关键词
Feynman-Kac perturbation; symmetric Markov processes; Dirichlet forms; heat kernel; spectral function; continuous additive functional of zero energy; Kato class; Green-tight measures; conditionally Green-tight measures; HEAT KERNELS; DIRICHLET FORMS; STOCHASTIC CALCULUS; HARNACK INEQUALITY; GAUGEABILITY; SUBCRITICALITY; FUNCTIONALS; OPERATORS; BOUNDS;
D O I
10.2969/jmsj/88038803
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, when a given symmetric Markov process X satisfies the stability of global heat kernel two-sided (upper) estimates by Markov perturbations (see Definition 1.2), we give a necessary and sufficient condition on the stability of global two-sided (upper) estimates for fundamental solution of Feynman-Kac semigroup of X. As a corollary, under the same assumptions, a weak type of global two-sided (upper) estimates holds for the fundamental solution of Feynman-Kac semigroup with (extended) Kato class conditions for measures. This generalizes all known results on the stability of global integral kernel estimates by symmetric Feynman-Kac perturbations with Kato class conditions in the framework of symmetric Markov processes.
引用
收藏
页码:527 / 572
页数:46
相关论文
共 50 条
[31]   ANALYTIC CHARACTERIZATIONS OF GAUGEABILITY FOR GENERALIZED FEYNMAN-KAC FUNCTIONALS [J].
Kim, Daehong ;
Kuwae, Kazuhiro .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (07) :4545-4596
[32]   LARGE DEVIATION PRINCIPLES FOR GENERALIZED FEYNMAN-KAC FUNCTIONALS AND ITS APPLICATIONS [J].
Kim, Daehong ;
Kuwae, Kazuhiro ;
Tawara, Yoshihiro .
TOHOKU MATHEMATICAL JOURNAL, 2016, 68 (02) :161-197
[33]  
Kuwae K, 1998, OSAKA J MATH, V35, P683
[34]  
Kuwae K., 2006, Adv. Stud. Pure Math., V44, P193
[35]   STOCHASTIC CALCULUS OVER SYMMETRIC MARKOV PROCESSES WITHOUT TIME REVERSAL [J].
Kuwae, Kazuhiro .
ANNALS OF PROBABILITY, 2010, 38 (04) :1532-1569
[36]  
LEJAN Y, 1978, B SOC MATH FR, V106, P61
[37]  
Ma Z.-M., 1992, Introduction to the Theory of (Non-Symmetric) Dirichlet Forms
[39]   COMPOSITE MEDIA AND ASYMPTOTIC DIRICHLET FORMS [J].
MOSCO, U .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 123 (02) :368-421
[40]   Two-sided estimates on the density of the Feynman-Kac semigroups of stable-like processes [J].
Song, RM .
ELECTRONIC JOURNAL OF PROBABILITY, 2006, 11 :146-161