Stability of estimates for fundamental solutions under Feynman-Kac perturbations for symmetric Markov processes

被引:1
作者
Kim, Daehong [1 ]
Kim, Panki [2 ,3 ]
Kuwae, Kazuhiro [4 ]
机构
[1] Technol Kumamoto Univ, Fac Adv Sci, Kumamoto 8608555, Japan
[2] Seoul Natl Univ, Dept Math Sci, Bldg 27,1 Gwanak Ro, Seoul 08826, South Korea
[3] Seoul Natl Univ, Res Inst Math, Bldg 27,1 Gwanak Ro, Seoul 08826, South Korea
[4] Fukuoka Univ, Dept Appl Math, Fukuoka 8140180, Japan
基金
新加坡国家研究基金会;
关键词
Feynman-Kac perturbation; symmetric Markov processes; Dirichlet forms; heat kernel; spectral function; continuous additive functional of zero energy; Kato class; Green-tight measures; conditionally Green-tight measures; HEAT KERNELS; DIRICHLET FORMS; STOCHASTIC CALCULUS; HARNACK INEQUALITY; GAUGEABILITY; SUBCRITICALITY; FUNCTIONALS; OPERATORS; BOUNDS;
D O I
10.2969/jmsj/88038803
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, when a given symmetric Markov process X satisfies the stability of global heat kernel two-sided (upper) estimates by Markov perturbations (see Definition 1.2), we give a necessary and sufficient condition on the stability of global two-sided (upper) estimates for fundamental solution of Feynman-Kac semigroup of X. As a corollary, under the same assumptions, a weak type of global two-sided (upper) estimates holds for the fundamental solution of Feynman-Kac semigroup with (extended) Kato class conditions for measures. This generalizes all known results on the stability of global integral kernel estimates by symmetric Feynman-Kac perturbations with Kato class conditions in the framework of symmetric Markov processes.
引用
收藏
页码:527 / 572
页数:46
相关论文
共 50 条
[1]   BROWNIAN-MOTION AND HARNACK INEQUALITY FOR SCHRODINGER-OPERATORS [J].
AIZENMAN, M ;
SIMON, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (02) :209-273
[2]  
[Anonymous], 1999, Grundlehren der mathematischen Wissenschaften
[3]  
Bae J, 2019, Arxiv, DOI arXiv:1904.10189
[4]   HEAT KERNEL ESTIMATES FOR SYMMETRIC JUMP PROCESSES WITH MIXED POLYNOMIAL GROWTHS [J].
Bae, Joohak ;
Kang, Jaehoon ;
Kim, Panki ;
Lee, Jaehun .
ANNALS OF PROBABILITY, 2019, 47 (05) :2830-2868
[5]   On the equivalence of parabolic Harnack inequalities and heat kernel estimates [J].
Barlow, Martin T. ;
Grigor'yan, Alexander ;
Kumagai, Takashi .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2012, 64 (04) :1091-1146
[6]   Stochastic calculus for symmetric Markov processes [J].
Chen, Z. -Q. ;
Fitzsimmons, P. J. ;
Kuwae, K. ;
Zhang, T. -S. .
ANNALS OF PROBABILITY, 2008, 36 (03) :931-970
[7]  
Chen ZQ, 2021, Arxiv, DOI arXiv:2103.03381
[8]   Stability of Heat Kernel Estimates for Symmetric Non-Local Dirichlet Forms [J].
Chen, Zhen-Qing ;
Kumagai, Takashi ;
Wang, Jian .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 271 (1330) :1-+
[9]   Heat kernel estimates and parabolic Harnack inequalities for symmetric Dirichlet forms [J].
Chen, Zhen-Qing ;
Kumagi, Takashi ;
Wang, Jian .
ADVANCES IN MATHEMATICS, 2020, 374
[10]   GLOBAL HEAT KERNEL ESTIMATES FOR SYMMETRIC JUMP PROCESSES (vol 363, pg 5021, 2011) [J].
Chen, Zhen-Qing ;
Kim, Panki ;
Kumagai, Takashi .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (10) :7515-7515