Moka-ADA: adversarial domain adaptation with model-oriented knowledge adaptation for cross-domain sentiment analysis

被引:3
|
作者
Zhang, Maoyuan [1 ,2 ,3 ]
Li, Xiang [1 ,2 ,3 ]
Wu, Fei [1 ,2 ,3 ]
机构
[1] Cent China Normal Univ, Hubei Prov Key Lab Artificial Intelligence & Smart, Wuhan 430079, Hubei, Peoples R China
[2] Cent China Normal Univ, Sch Comp, Wuhan 430079, Hubei, Peoples R China
[3] Cent China Normal Univ, Natl Language Resources Monitor & Res Ctr Network, Wuhan 430079, Hubei, Peoples R China
关键词
Cross-domain sentiment analysis; Domain adaptation; Adversarial learning; Knowledge distillation;
D O I
10.1007/s11227-023-05191-6
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Cross-domain sentiment analysis (CDSA) aims to overcome domain discrepancy to judge the sentiment polarity of the target domain lacking labeled data. Recent research has focused on using domain adaptation approaches to address such domain migration problems. Among them, adversarial learning performs domain distribution alignment via domain confusion to transfer domain-invariant knowledge. However, this method that transforms feature representations to be domain-invariant tends to align only the marginal distribution, and may inevitably distort the original feature representations containing discriminative knowledge, thus making the conditional distribution inconsistent. To alleviate this problem, we propose adversarial domain adaptation with model-oriented knowledge adaptation (Moka-ADA) for the CDSA task. We adopt the adversarial discriminative domain adaptation (ADDA) framework to learn domain-invariant knowledge for marginal distribution alignment, based on which knowledge adaptation is conducted between the source and target models for conditional distribution alignment. Specifically, we design a dual structure with similarity constraints on intermediate feature representations and final classification probabilities, so that the target model in training learns discriminative knowledge from the trained source model. Experimental results on a publicly available sentiment analysis dataset show that our method achieves new state-of-the-art performance.
引用
收藏
页码:13724 / 13743
页数:20
相关论文
共 50 条
  • [21] Cross-Domain Error Minimization for Unsupervised Domain Adaptation
    Du, Yuntao
    Chen, Yinghao
    Cui, Fengli
    Zhang, Xiaowen
    Wang, Chongjun
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2021), PT II, 2021, 12682 : 429 - 448
  • [22] Cross-domain feature enhancement for unsupervised domain adaptation
    Sifan, Long
    Shengsheng, Wang
    Xin, Zhao
    Zihao, Fu
    Bilin, Wang
    APPLIED INTELLIGENCE, 2022, 52 (15) : 17326 - 17340
  • [23] Robust adversarial discriminative domain adaptation for real-world cross-domain visual recognition
    Yang, Jianfei
    Zou, Han
    Zhou, Yuxun
    Xie, Lihua
    NEUROCOMPUTING, 2021, 433 : 28 - 36
  • [24] Cross-Domain Extreme Learning Machines for Domain Adaptation
    Li, Shuang
    Song, Shiji
    Huang, Gao
    Wu, Cheng
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (06): : 1194 - 1207
  • [25] Similarity-based meta-learning network with adversarial domain adaptation for cross-domain fault identification
    Feng, Yong
    Chen, Jinglong
    Yang, Zhuozheng
    Song, Xiaogang
    Chang, Yuanhong
    He, Shuilong
    Xu, Enyong
    Zhou, Zitong
    KNOWLEDGE-BASED SYSTEMS, 2021, 217
  • [26] Weakly-Supervised Domain Adaptation With Adversarial Entropy for Building Segmentation in Cross-Domain Aerial Imagery
    Yao, Xuedong
    Wang, Yandong
    Wu, Yanlan
    Liang, Zeyu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 8407 - 8418
  • [27] Unsupervised Domain Adaptation for Cross-domain Histopathology Image Classification
    Li, Xiangning
    Pan, Chen
    He, Lingmin
    Li, Xinyu
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (8) : 23311 - 23331
  • [28] Cross-domain recommender systems via multimodal domain adaptation
    Shyam, Adamya
    Kamani, Ramya
    Kagita, Venkateswara Rao
    Kumar, Vikas
    COMPUTERS & ELECTRICAL ENGINEERING, 2025, 123
  • [29] Adversarial domain adaptation with classifier alignment for cross-domain intelligent fault diagnosis of multiple source domains
    Zhang, Yongchao
    Ren, Zhaohui
    Zhou, Shihua
    Yu, Tianzhuang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (03)
  • [30] Label adversarial domain adaptation network for predicting remaining useful life based on cross-domain condition
    Lv, Shanshan
    Xia, Chengcheng
    Cheng, Cong
    Yan, Jianhai
    Wu, Xiaodan
    COMPUTERS & INDUSTRIAL ENGINEERING, 2024, 197