Entropy solutions for elliptic Schrodinger type equations under Fourier boundary conditions

被引:6
作者
Benboubker, Mohamed Badr [1 ]
Benkhalou, Hayat [2 ]
Hjiaj, Hassane [2 ]
Nyanquini, Ismael [3 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Higher Sch Technol, Fes, Morocco
[2] Abdelmalek Essaadi Univ, Fac Sci Tetuan, Dept Math, BP 2121, Tetouan 2121, Morocco
[3] Nazi BONI Univ, Lab Math & Informat LAMI, Sci Exactes & Appl, UFR, 01 BP 1091, Bobo Dioulasso 01, Burkina Faso
关键词
Schrodinger type equations; Sobolev spaces with variable exponent; Fourier boundary conditions; Entropy solutions; SPACES;
D O I
10.1007/s12215-022-00822-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article is concerned with the study of entropy solutions to nonlinear Schrodinger-type equation of the form {div (a(x,vertical bar del u vertical bar)del u) + vertical bar u vertical bar(p(x)-2)u = f(x,u) in Omega lambda u+a(x, vertical bar del u vertical bar)del u.eta = g on partial derivative Omega, where Omega is a bounded open subset in R-N (N >= 3) with Lipschitz boundary partial derivative Omega, eta is the outer unit normal vector on partial derivative Omega, the exponent p(.) is a continuous function such that 1 < p(x) < N and lambda > 0. Under a suitable condition on f and g is an element of L-1 (partial derivative Omega), we prove the existence of entropy solutions for a Schrodinger type equation in the context of Sobolev spaces with variable exponents.
引用
收藏
页码:2831 / 2855
页数:25
相关论文
共 22 条
[1]  
Ablowitz MJ., 2014, DISCRETE CONTINUOUS
[2]  
Azroul E, 2013, J APPL ANAL COMPUT, V3, P105
[3]  
Azroul E, 2013, ANN UNIV CRAIOVA-MAT, V40, P9
[4]   Renormalized solutions for p(x)-Laplacian equation with Neumann nonhomogeneous boundary condition [J].
Benboubker, M. B. ;
Nassouri, E. ;
Ouaro, S. ;
Traore, U. .
ADVANCES IN OPERATOR THEORY, 2020, 5 (04) :1480-1497
[5]  
Benboubker MB, 2021, Nonautonomous Dynamical Systems, V8, P180, DOI 10.1515/msds-2020-0133
[6]  
Benboubker MB, 2011, ELECTRON J DIFFER EQ
[7]   Entropy solutions for a doubly nonlinear elliptic problem with variable exponent [J].
Bonzi, Bernard K. ;
Ouaro, Stanislas .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 370 (02) :392-405
[8]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[9]   Sobolev embedding theorems for spaces Wk,p(x)(Ω) [J].
Fan, XL ;
Shen, JS ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 262 (02) :749-760
[10]   On the spaces Lp(x)(Ω) and Wm, p(x)(Ω) [J].
Fan, XL ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :424-446