A study on the resistance matrix of a graph

被引:0
作者
Sarma, Deepak [1 ]
机构
[1] Assam Agr Univ, Dept Agril Stat, Jorhat 785013, Assam, India
关键词
Connected graph; Laplacian matrix; Resistance distance; Moore Penrose inverse; (1)-inverse;
D O I
10.1007/s13226-022-00254-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we consider the resistance matrix of a connected graph. A connected graph is said to be resistance regular if all the row(column) sums of its resistance matrix are equal. We establish some necessary and sufficient conditions for a simple connected graph to be a resistance regular graph. Also, we find some relationship between the Laplacian matrix and the resistance matrix in the case of weighted graphs where all edge weights are positive definite matrices of given order.
引用
收藏
页码:299 / 311
页数:13
相关论文
共 9 条
  • [1] Atik F., 2017, ARXIV171010097
  • [2] Bapat RB, 2008, AKCE INT J GRAPHS CO, V5, P35
  • [3] Bapat R. B., 2010, GRAPHS MATRICES, V27, DOI [10.1007/978-1-4471-6569-9, DOI 10.1007/978-1-4471-6569-9]
  • [4] Bapat R.B., 2016, ARXIV161109457
  • [5] GUTMAN I, 2004, B ACAD SERB SCI ARTS, V129, P15, DOI DOI 10.2298/BMAT0429015G
  • [6] Horn R. A., 2013, Matrix analysis, V2nd
  • [7] RESISTANCE DISTANCE
    KLEIN, DJ
    RANDIC, M
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 1993, 12 (1-4) : 81 - 95
  • [8] Zhou J., 2016, P 2016 19 INT C ELEC, P1, DOI [10.1109/ICSENS.2016.7808716, 10.37236/5295, DOI 10.1109/RADAR.2016.8059395]
  • [9] Resistance characterizations of equiarboreal graphs
    Zhou, Jiang
    Sun, Lizhu
    Bu, Changjiang
    [J]. DISCRETE MATHEMATICS, 2017, 340 (12) : 2864 - 2870