Differential Privacy: Exploring Federated Learning Privacy Issue to Improve Mobility Quality

被引:0
|
作者
Gomes, Gabriel L. [1 ]
da Cunha, Felipe D. [2 ]
Villas, Leandro A. [1 ]
机构
[1] Univ Campinas UNICAMP, Inst Comp, Campinas, Brazil
[2] PUC Minas PUCMG, Dept Comp Sci, Belo Horizonte, MG, Brazil
来源
2023 IEEE LATIN-AMERICAN CONFERENCE ON COMMUNICATIONS, LATINCOM | 2023年
关键词
Urban Mobility; Machine Learning; Federated Learning; Data Privacy; Differential Privacy; CHALLENGES;
D O I
10.1109/LATINCOM59467.2023.10361884
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The increasing number of vehicles within cities has been stimulating intense research for smart tools to avoid traffic jams and improve mobility quality. To get the most accurate data, urban mobility applications consume data generated by users as they explain the mobility pattern of a studied region, entailing the meantime vulnerability of privacy of these latter. Thus, new techniques are considered to share the minimum information possible to train models and keep privacy. Federated Learning (FL) is one approach that exploits this concept, sharing only the gradients produced by local models trained at each device. Nonetheless, information can be learned during the training, exposing vulnerable content. In this context, this study aimed to validate the FL in a given application and check the data leakage in this decentralized training architecture through the differential privacy (DP) method, removing potential clients that make the architecture vulnerable. Finally, we ended up having a final FL model with 71% of accuracy and removing two processing units from the training process.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Federated Learning and Privacy
    Bonawitz, Kallista
    Kairouz, Peter
    Mcmahan, Brendan
    Ramage, Daniel
    COMMUNICATIONS OF THE ACM, 2022, 65 (04) : 90 - 97
  • [32] Federated Learning and Privacy
    Bonawitz K.
    Kairouz P.
    McMahan B.
    Ramage D.
    Queue, 2021, 19 (05): : 87 - 114
  • [33] Maintaining Privacy in Medical Imaging with Federated Learning, Deep Learning, Differential Privacy, and Encrypted Computation
    Shah, Unnati
    Dave, Ishita
    Malde, Jeel
    Mehta, Jalpa
    Kodeboyina, Srikanth
    2021 6TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2021,
  • [34] Exploring Homomorphic Encryption and Differential Privacy Techniques towards Secure Federated Learning Paradigm
    Aziz, Rezak
    Banerjee, Soumya
    Bouzefrane, Samia
    Vinh, Thinh Le
    FUTURE INTERNET, 2023, 15 (09)
  • [35] Combining homomorphic encryption and differential privacy in federated learning
    Sebert, Arnaud Grivet
    Checri, Marina
    Stan, Oana
    Sirdey, Renaud
    Gouy-Pailler, Cedric
    2023 20TH ANNUAL INTERNATIONAL CONFERENCE ON PRIVACY, SECURITY AND TRUST, PST, 2023, : 145 - 151
  • [36] Bidirectional adaptive differential privacy federated learning scheme
    Li, Yang
    Xu, Jin
    Zhu, Jianming
    Wang, Youwei
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2024, 51 (03): : 158 - 169
  • [37] Differential Privacy Federated Learning Based on Adaptive Adjustment
    Cheng, Yanjin
    Li, Wenmin
    Qin, Sujuan
    Tu, Tengfei
    CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (03): : 4777 - 4795
  • [38] A federated learning scheme meets dynamic differential privacy
    Guo, Shengnan
    Wang, Xibin
    Long, Shigong
    Liu, Hai
    Hai, Liu
    Sam, Toong Hai
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2023, 8 (03) : 1087 - 1100
  • [39] Dynamic Personalized Federated Learning with Adaptive Differential Privacy
    Yang, Xiyuan
    Huang, Wenke
    Ye, Mang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [40] The Impact of Differential Privacy on Model Fairness in Federated Learning
    Gu, Xiuting
    Zhu, Tianqing
    Li, Jie
    Zhang, Tao
    Ren, Wei
    NETWORK AND SYSTEM SECURITY, NSS 2020, 2020, 12570 : 419 - 430