Differential Privacy: Exploring Federated Learning Privacy Issue to Improve Mobility Quality

被引:0
|
作者
Gomes, Gabriel L. [1 ]
da Cunha, Felipe D. [2 ]
Villas, Leandro A. [1 ]
机构
[1] Univ Campinas UNICAMP, Inst Comp, Campinas, Brazil
[2] PUC Minas PUCMG, Dept Comp Sci, Belo Horizonte, MG, Brazil
来源
2023 IEEE LATIN-AMERICAN CONFERENCE ON COMMUNICATIONS, LATINCOM | 2023年
关键词
Urban Mobility; Machine Learning; Federated Learning; Data Privacy; Differential Privacy; CHALLENGES;
D O I
10.1109/LATINCOM59467.2023.10361884
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The increasing number of vehicles within cities has been stimulating intense research for smart tools to avoid traffic jams and improve mobility quality. To get the most accurate data, urban mobility applications consume data generated by users as they explain the mobility pattern of a studied region, entailing the meantime vulnerability of privacy of these latter. Thus, new techniques are considered to share the minimum information possible to train models and keep privacy. Federated Learning (FL) is one approach that exploits this concept, sharing only the gradients produced by local models trained at each device. Nonetheless, information can be learned during the training, exposing vulnerable content. In this context, this study aimed to validate the FL in a given application and check the data leakage in this decentralized training architecture through the differential privacy (DP) method, removing potential clients that make the architecture vulnerable. Finally, we ended up having a final FL model with 71% of accuracy and removing two processing units from the training process.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Utility Optimization of Federated Learning with Differential Privacy
    Zhao, Jianzhe
    Mao, Keming
    Huang, Chenxi
    Zeng, Yuyang
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [22] Wireless Federated Learning with Local Differential Privacy
    Seif, Mohamed
    Tandon, Ravi
    Li, Ming
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 2604 - 2609
  • [23] Differential Privacy for Deep and Federated Learning: A Survey
    El Ouadrhiri, Ahmed
    Abdelhadi, Ahmed
    IEEE ACCESS, 2022, 10 : 22359 - 22380
  • [24] Shuffed Model of Differential Privacy in Federated Learning
    Girgis, Antonious M.
    Data, Deepesh
    Diggavi, Suhas
    Kairouz, Peter
    Suresh, Ananda Theertha
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [25] Preserving User Privacy for Machine Learning: Local Differential Privacy or Federated Machine Learning?
    Zheng, Huadi
    Hu, Haibo
    Han, Ziyang
    IEEE INTELLIGENT SYSTEMS, 2020, 35 (04) : 5 - 14
  • [26] Privacy Enhanced Federated Learning Utilizing Differential Privacy and Interplanetary File System
    Kim, Hyowon
    Doh, Inshil
    2023 INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING, ICOIN, 2023, : 312 - 317
  • [27] A Framework for Privacy-Preserving in IoV Using Federated Learning With Differential Privacy
    Adnan, Muhammad
    Syed, Madiha Haider
    Anjum, Adeel
    Rehman, Semeen
    IEEE ACCESS, 2025, 13 : 13507 - 13521
  • [28] Protecting Data Privacy in Federated Learning Combining Differential Privacy and Weak Encryption
    Wang, Chuanyin
    Ma, Cunqing
    Li, Min
    Gao, Neng
    Zhang, Yifei
    Shen, Zhuoxiang
    SCIENCE OF CYBER SECURITY, SCISEC 2021, 2021, 13005 : 95 - 109
  • [29] PPeFL: Privacy-Preserving Edge Federated Learning With Local Differential Privacy
    Wang, Baocang
    Chen, Yange
    Jiang, Hang
    Zhao, Zhen
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (17) : 15488 - 15500
  • [30] Exploring Federated Learning: The Framework, Applications, Security & Privacy
    Saha, Ashim
    Ali, Lubaina
    Rahman, Rudrita
    Monir, Md Fahad
    Ahmed, Tarem
    2024 IEEE INTERNATIONAL BLACK SEA CONFERENCE ON COMMUNICATIONS AND NETWORKING, BLACKSEACOM 2024, 2024, : 272 - 275