Protons taken hostage: Dynamic H-bond networks of the pH-sensing GPR68

被引:7
作者
Kapur, Bhav [1 ,2 ]
Baldessari, Filippo [3 ]
Lazaratos, Michalis [4 ]
Nar, Herbert [1 ]
Schnapp, Gisela [1 ]
Giorgetti, Alejandro [3 ,5 ,6 ]
Bondar, Ana-Nicoleta [5 ,6 ,7 ]
机构
[1] Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Str 65, D-88397 Biberach, Germany
[2] Christian Albrechts Univ Kiel, D-24118 Kiel, Germany
[3] Univ Verona, Dept Biotechnol, I-37134 Verona, Italy
[4] Free Univ Berlin, Dept Phys, Theoret Mol Biophys Grp, Arnimallee 14, D-14195 Berlin, Germany
[5] Forschungszentrum Julich, Inst Neurosci & Med, Wilhelm Johnen Str, D-52525 Julich, Germany
[6] Forschungszentrum Julich, Inst Adv Simulat IAS 5 INM 9, Computat Biomed, Wilhelm Johnen Str, D-52525 Julich, Germany
[7] Univ Bucharest, Fac Phys, Str Atomistilor 405, Bucharest 077125, Romania
关键词
Proton-sensing G Protein Coupled Receptors; Protocol for structural modeling and model assessment; Graph theory; Dynamic hydrogen-bond networks; Protonation-coupled protein dynamics; PROTEIN-COUPLED RECEPTORS; PARTICLE MESH EWALD; CRYSTAL-STRUCTURE; MOLECULAR-DYNAMICS; HOMOLOGY DETECTION; GPCR ACTIVATION; RHODOPSIN; SURFACE; CHARMM; G2A;
D O I
10.1016/j.csbj.2023.08.034
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Proton-sensing G Protein Coupled Receptors (GPCRs) sense changes in the extracellular pH to effect cell signaling for cellular homeostasis. They tend to be overexpressed in solid tumors associated with acidic extracellular pH, and are of direct interest as drug targets. How proton-sensing GPCRs sense extracellular acidification and activate upon protonation change is important to understand, because it may guide the design of therapeutics. Lack of publicly available experimental structures make it challenging to discriminate between conflicting mechanisms proposed for proton-binding, as main roles have been assigned to either an extracellular histidine cluster or to an internal carboxylic triad. Here we present a protocol to derive and evaluate structural models of the proton -sensing GPR68. This approach integrates state-of-the-art homology modeling with microsecond-timescale atomistic simulations, and with a detailed assessment of the compatibility of the structural models with known structural features of class A GPCRs. To decipher structural elements of potential interest for protonation-coupled conformational changes of GPR68, we used the best-compatible model as a starting point for independent atomistic simulations of GPR68 with different protonation states, and graph computations to characterize the response of GPR68 to changes in protonation. We found that GPR68 hosts an extended hydrogen-bond network that inter-connects the extracellular histidine cluster to the internal carboxylic triad, and which can even reach groups at the cytoplasmic G-protein binding site. Taken together, results suggest that GPR68 relies on dynamic, hydrogen-bond networks to inter-connect extracellular and internal proton-binding sites, and to elicit conformational changes at the cytoplasmic G-protein binding site.
引用
收藏
页码:4370 / 4384
页数:15
相关论文
共 120 条
[61]   OPM database and PPM web server: resources for positioning of proteins in membranes [J].
Lomize, Mikhail A. ;
Pogozheva, Irina D. ;
Joo, Hyeon ;
Mosberg, Henry I. ;
Lomize, Andrei L. .
NUCLEIC ACIDS RESEARCH, 2012, 40 (D1) :D370-D376
[62]   Dynamic Carboxylate/Water Networks on the Surface of the PsbO Subunit of Photosystem II [J].
Lorch, Sebastian ;
Capponi, Sara ;
Pieront, Florian ;
Bondar, Ana-Nicoleta .
JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (37) :12172-12181
[63]   Proton-sensing G-protein-coupled receptors [J].
Ludwig, MG ;
Vanek, M ;
Guerini, D ;
Gasser, JA ;
Jones, CE ;
Junker, U ;
Hofstetter, H ;
Wolf, RM ;
Seuwen, K .
NATURE, 2003, 425 (6953) :93-98
[64]   All-atom empirical potential for molecular modeling and dynamics studies of proteins [J].
MacKerell, AD ;
Bashford, D ;
Bellott, M ;
Dunbrack, RL ;
Evanseck, JD ;
Field, MJ ;
Fischer, S ;
Gao, J ;
Guo, H ;
Ha, S ;
Joseph-McCarthy, D ;
Kuchnir, L ;
Kuczera, K ;
Lau, FTK ;
Mattos, C ;
Michnick, S ;
Ngo, T ;
Nguyen, DT ;
Prodhom, B ;
Reiher, WE ;
Roux, B ;
Schlenkrich, M ;
Smith, JC ;
Stote, R ;
Straub, J ;
Watanabe, M ;
Wiórkiewicz-Kuczera, J ;
Yin, D ;
Karplus, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (18) :3586-3616
[65]   CONSTANT-PRESSURE MOLECULAR-DYNAMICS ALGORITHMS [J].
MARTYNA, GJ ;
TOBIAS, DJ ;
KLEIN, ML .
JOURNAL OF CHEMICAL PHYSICS, 1994, 101 (05) :4177-4189
[66]   GPR31 and GPR151 are activated under acidic conditions [J].
Mashiko, Misaki ;
Kurosawa, Aya ;
Tani, Yuki ;
Tsuji, Takashi ;
Takeda, Shigeki .
JOURNAL OF BIOCHEMISTRY, 2019, 166 (04) :317-322
[67]   Crystal structure of squid rhodopsin [J].
Murakami, Midori ;
Kouyama, Tsutomu .
NATURE, 2008, 453 (7193) :363-U33
[68]   G2A is a proton-sensing G-protein-coupled receptor antagonized by lysophosphatidylcholine [J].
Murakami, N ;
Yokomizo, T ;
Okuno, T ;
Shimizu, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (41) :42484-42491
[69]   G-Protein coupled receptors: structure and function in drug discovery [J].
Odoemelam, Chiemela S. ;
Percival, Benita ;
Wallis, Helen ;
Chang, Ming-Wei ;
Ahmad, Zeeshan ;
Scholey, Dawn ;
Burton, Emily ;
Williams, Ian H. ;
Kamerlin, Caroline Lynn ;
Wilson, Philippe B. .
RSC ADVANCES, 2020, 10 (60) :36337-36348
[70]  
ODOWD BF, 1989, J BIOL CHEM, V264, P7564