Protons taken hostage: Dynamic H-bond networks of the pH-sensing GPR68

被引:7
作者
Kapur, Bhav [1 ,2 ]
Baldessari, Filippo [3 ]
Lazaratos, Michalis [4 ]
Nar, Herbert [1 ]
Schnapp, Gisela [1 ]
Giorgetti, Alejandro [3 ,5 ,6 ]
Bondar, Ana-Nicoleta [5 ,6 ,7 ]
机构
[1] Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Str 65, D-88397 Biberach, Germany
[2] Christian Albrechts Univ Kiel, D-24118 Kiel, Germany
[3] Univ Verona, Dept Biotechnol, I-37134 Verona, Italy
[4] Free Univ Berlin, Dept Phys, Theoret Mol Biophys Grp, Arnimallee 14, D-14195 Berlin, Germany
[5] Forschungszentrum Julich, Inst Neurosci & Med, Wilhelm Johnen Str, D-52525 Julich, Germany
[6] Forschungszentrum Julich, Inst Adv Simulat IAS 5 INM 9, Computat Biomed, Wilhelm Johnen Str, D-52525 Julich, Germany
[7] Univ Bucharest, Fac Phys, Str Atomistilor 405, Bucharest 077125, Romania
关键词
Proton-sensing G Protein Coupled Receptors; Protocol for structural modeling and model assessment; Graph theory; Dynamic hydrogen-bond networks; Protonation-coupled protein dynamics; PROTEIN-COUPLED RECEPTORS; PARTICLE MESH EWALD; CRYSTAL-STRUCTURE; MOLECULAR-DYNAMICS; HOMOLOGY DETECTION; GPCR ACTIVATION; RHODOPSIN; SURFACE; CHARMM; G2A;
D O I
10.1016/j.csbj.2023.08.034
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Proton-sensing G Protein Coupled Receptors (GPCRs) sense changes in the extracellular pH to effect cell signaling for cellular homeostasis. They tend to be overexpressed in solid tumors associated with acidic extracellular pH, and are of direct interest as drug targets. How proton-sensing GPCRs sense extracellular acidification and activate upon protonation change is important to understand, because it may guide the design of therapeutics. Lack of publicly available experimental structures make it challenging to discriminate between conflicting mechanisms proposed for proton-binding, as main roles have been assigned to either an extracellular histidine cluster or to an internal carboxylic triad. Here we present a protocol to derive and evaluate structural models of the proton -sensing GPR68. This approach integrates state-of-the-art homology modeling with microsecond-timescale atomistic simulations, and with a detailed assessment of the compatibility of the structural models with known structural features of class A GPCRs. To decipher structural elements of potential interest for protonation-coupled conformational changes of GPR68, we used the best-compatible model as a starting point for independent atomistic simulations of GPR68 with different protonation states, and graph computations to characterize the response of GPR68 to changes in protonation. We found that GPR68 hosts an extended hydrogen-bond network that inter-connects the extracellular histidine cluster to the internal carboxylic triad, and which can even reach groups at the cytoplasmic G-protein binding site. Taken together, results suggest that GPR68 relies on dynamic, hydrogen-bond networks to inter-connect extracellular and internal proton-binding sites, and to elicit conformational changes at the cytoplasmic G-protein binding site.
引用
收藏
页码:4370 / 4384
页数:15
相关论文
共 120 条
[1]   Surface-mediated proton-transfer reactions in membrane-bound proteins [J].
Ädelroth, P ;
Brzezinski, P .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2004, 1655 (1-3) :102-115
[2]   Interaction of POPC, DPPC, and POPE with the μ opioid receptor: A coarse-grained molecular dynamics study [J].
Angladon, Marie-Ange ;
Fossepre, Mathieu ;
Leherte, Laurence ;
Vercauteren, Daniel P. .
PLOS ONE, 2019, 14 (03)
[3]  
Ballesteros J.A., 1995, Methods in Neurosciences, V25, P366, DOI [DOI 10.1016/S1043-9471(05)80049-7, 10.1016/S1043-9471(05)80049-7]
[4]   UniProt: a hub for protein information [J].
Bateman, Alex ;
Martin, Maria Jesus ;
O'Donovan, Claire ;
Magrane, Michele ;
Apweiler, Rolf ;
Alpi, Emanuele ;
Antunes, Ricardo ;
Arganiska, Joanna ;
Bely, Benoit ;
Bingley, Mark ;
Bonilla, Carlos ;
Britto, Ramona ;
Bursteinas, Borisas ;
Chavali, Gayatri ;
Cibrian-Uhalte, Elena ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Fazzini, Francesco ;
Gane, Paul ;
Cas-tro, Leyla Garcia ;
Garmiri, Penelope ;
Hatton-Ellis, Emma ;
Hieta, Reija ;
Huntley, Rachael ;
Legge, Duncan ;
Liu, Wudong ;
Luo, Jie ;
MacDougall, Alistair ;
Mutowo, Prudence ;
Nightin-gale, Andrew ;
Orchard, Sandra ;
Pichler, Klemens ;
Poggioli, Diego ;
Pundir, Sangya ;
Pureza, Luis ;
Qi, Guoying ;
Rosanoff, Steven ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Turner, Edward ;
Volynkin, Vladimir ;
Wardell, Tony ;
Watkins, Xavier ;
Zellner, Hermann ;
Cowley, Andrew ;
Figueira, Luis ;
Li, Weizhong ;
McWilliam, Hamish .
NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) :D204-D212
[5]   Protein-water hydrogen-bond networks of G protein-coupled receptors: Graph-based analyses of static structures and molecular dynamics [J].
Bertalan, Eva ;
Lesnik, Samo ;
Bren, Urban ;
Bondar, Ana-Nicoleta .
JOURNAL OF STRUCTURAL BIOLOGY, 2020, 212 (03)
[6]   G-Protein-Coupled Receptor-Membrane Interactions Depend on the Receptor Activation State [J].
Bhattarai, Apurba ;
Wang, Jinan ;
Miao, Yinglong .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2020, 41 (05) :460-471
[7]   Interplay between local protein interactions and water bridging of a proton antenna carboxylate cluster [J].
Bondar, Ana-Nicoleta .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2022, 1864 (12)
[8]   Hydrogen-bond networks for proton couplings in G-Protein coupled receptors [J].
Bondar, Ana-Nicoleta ;
Alfonso-Prieto, Mercedes .
FRONTIERS IN PHYSICS, 2022, 10
[9]   Graphs of Hydrogen-Bond Networks to Dissect Protein Conformational Dynamics [J].
Bondar, Ana-Nicoleta .
JOURNAL OF PHYSICAL CHEMISTRY B, 2022, 126 (22) :3973-3984
[10]  
Bondar AN, 2022, ADV PROTEIN CHEM STR, P199, DOI 10.1016/bs.apcsb.2021.09.002