Tighter Interval Estimation for Discrete-Time Linear Systems With a New Dynamic Triggering Approach

被引:12
作者
Shen, Mouquan [1 ]
Gu, Yang [2 ]
Wang, Qing-Guo [3 ,4 ]
Wu, Zheng-Guang [5 ]
Park, Ju H. [6 ]
机构
[1] Nanjing Tech Univ, Coll Elect Engn & Control Sci, Nanjing 211816, Peoples R China
[2] Nanjing Tech Univ, Sch Mech & Power Engn, Nanjing 211816, Peoples R China
[3] Beijing Normal Univ, Inst Artificial Intelligence & Future Networks, Zhuhai 519087, Peoples R China
[4] BNU HKBU United Int Coll, Guangdong Key Lab AI & Multimodal Data Proc, Zhuhai 519087, Peoples R China
[5] Zhejiang Univ, Inst Cyber Syst & Control, Hangzhou 310027, Peoples R China
[6] Yeungnam Univ, Dept Elect Engn, Kyonsan 38541, South Korea
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
W-8; control; event-triggered (ET) control; state estimation; STATE ESTIMATION; OBSERVERS; DESIGN;
D O I
10.1109/TIM.2023.3300430
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article is concerned with interval estimation for discrete-time linear systems with unknown disturbances. An improved proportional-integral configuration is built for an iterative interval observer to get tighter estimation intervals for system states and disturbances. A novel dynamic triggering scheme is put forward to reduce unnecessary transmissions between sensor output to the observer. In this scheme, the threshold could be dynamically adjusted with system running stages. Moreover, this scheme covers some existing results as special cases. A structured separation method is employed to solve the control gain and the observer gains in terms of linear matrix inequalities (LMIs). A comparison simulation study is provided to show the validity of the supplied estimation configuration and the triggering scheme.
引用
收藏
页数:11
相关论文
共 44 条
[1]   Guaranteed state estimation by zonotopes [J].
Alamo, T ;
Bravo, JM ;
Camacho, EF .
AUTOMATICA, 2005, 41 (06) :1035-1043
[2]   Comparison of guaranteed state estimators for linear time-invariant systems [J].
Althoff, Matthias ;
Rath, Jagat Jyoti .
AUTOMATICA, 2021, 130
[3]  
Boyd S., 1994, LINEAR MATRIX INEQUA, DOI DOI 10.1137/1.9781611970777
[4]  
Cassandras C.G., 2014, Journal of Control and Decision, V1, P3
[5]   Applying discrete-time proportional integral observers for state and disturbance estimations [J].
Chang, JL .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (05) :814-818
[6]   Zonotopes and Kalman observers: Gain optimality under distinct uncertainty paradigms and robust convergence [J].
Combastel, Christophe .
AUTOMATICA, 2015, 55 :265-273
[7]   On design of interval observers with sampled measurement [J].
Efimov, D. ;
Fridman, E. ;
Polyakov, A. ;
Perruquetti, W. ;
Richard, J. -P. .
SYSTEMS & CONTROL LETTERS, 2016, 96 :158-164
[8]   Control of Nonlinear and LPV Systems: Interval Observer-Based Framework [J].
Efimov, Denis ;
Raissi, Tarek ;
Zolghadri, Ali .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (03) :773-778
[9]   State estimation of linear systems in the presence of sporadic measurements [J].
Ferrante, Francesco ;
Gouaisbaut, Frederic ;
Sanfelice, Ricardo G. ;
Tarbouriech, Sophie .
AUTOMATICA, 2016, 73 :101-109
[10]  
Gai W., 2022, IEEE Trans. Instrum. Meas., V71, P1