Strong work-hardenable body-centered-cubic high-entropy alloys at cryogenic temperature

被引:31
作者
Wen, Xiaocan [1 ]
Zhu, Li [2 ]
Naeem, Muhammad [2 ]
Huang, Hailong [1 ]
Jiang, Suihe [1 ]
Wang, Hui [1 ]
Liu, Xiongjun [1 ]
Zhang, Xiaobin [1 ]
Wang, Xun-Li [2 ]
Wu, Yuan [1 ]
Lu, Zhaoping [1 ]
机构
[1] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
[2] City Univ Hong Kong, Dept Phys, Kowloon, 83 Tat Chee Ave, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
High entropy alloys; Phase stability; Deformation twinning; Phase transformation; Mechanical properties; DUCTILE-BRITTLE TRANSITION; MECHANICAL-PROPERTIES; TENSILE PROPERTIES; HIGH-STRENGTH; DEFORMATION; TRANSFORMATION; STEEL; COMBINATION; BEHAVIOR; FRACTURE;
D O I
10.1016/j.scriptamat.2023.115434
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Body-centered cubic (BCC) metals and alloys are usually brittle with limited strain hardening capability at cryogenic temperatures due to the restricted dislocation nucleation and mobility. Herein, we report that decrease of the Nb content in the TiZrHfNbTa0.2 high-entropy alloys (HEAs) can facilitate multiple deformation mechanisms, i.e., dislocation planar slip, strain-induced phase transformations and twinning, at the cryogenic temperature of 77 K due to the decreased phase stability. Particularly, the TiZrHfNb0.3Ta0.2 HEA showed pronounced strain hardening capability and exceptionally high uniform elongation of about 25% with no sign of ductile-brittle transition. Our findings are important not only for providing a prominent family of metallic materials for application at the extreme service conditions, but also for understanding the deformation mechanism of HEAs at cryogenic temperatures in general.
引用
收藏
页数:6
相关论文
共 39 条
[1]   High-entropy ceramics: Review of principles, production and applications [J].
Akrami, Saeid ;
Edalati, Parisa ;
Fuji, Masayoshi ;
Edalati, Kaveh .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2021, 146
[2]   Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys [J].
Bu, Yeqiang ;
Wu, Yuan ;
Lei, Zhifeng ;
Yuan, Xiaoyuan ;
Wu, Honghui ;
Feng, Xiaobin ;
Liu, Jiabin ;
Ding, Jun ;
Lu, Yang ;
Wang, Hongtao ;
Lu, Zhaoping ;
Yang, Wei .
MATERIALS TODAY, 2021, 46 :28-34
[3]   Mechanistic basis of oxygen sensitivity in titanium [J].
Chong, Yan ;
Poschmann, Max ;
Zhang, Ruopeng ;
Zhao, Shiteng ;
Hooshmand, Mohammad S. ;
Rothchild, Eric ;
Olmsted, David L. ;
Morris, J. W., Jr. ;
Chrzan, Daryl C. ;
Asta, Mark ;
Minor, Andrew M. .
SCIENCE ADVANCES, 2020, 6 (43)
[4]   Twinning-induced plasticity (TWIP) steels [J].
De Cooman, Bruno C. ;
Estrin, Yuri ;
Kim, Sung Kyu .
ACTA MATERIALIA, 2018, 142 :283-362
[5]   Cross-kink unpinning controls the medium- to high-temperature strength of body-centered cubic NbTiZr medium-entropy alloy [J].
Eleti, Rajeshwar R. ;
Stepanov, Nikita ;
Yurchenko, Nikita ;
Zherebtsov, Sergey ;
Maresca, Francesco .
SCRIPTA MATERIALIA, 2022, 209
[6]   Mechanical behavior and thermal activation analysis of HfNbTaTiZr body-centered cubic high-entropy alloy during tensile deformation at 77 K [J].
Eleti, Rajeshwar R. ;
Stepanov, Nikita ;
Zherebtsov, Sergey .
SCRIPTA MATERIALIA, 2020, 188 :118-123
[7]   High-entropy alloys [J].
George, Easo P. ;
Raabe, Dierk ;
Ritchie, Robert O. .
NATURE REVIEWS MATERIALS, 2019, 4 (08) :515-534
[8]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[9]   Ductile-brittle transition temperature of ultrafine ferrite/cementite microstructure in a low carbon steel controlled by effective grain size [J].
Hanamura, T ;
Yin, F ;
Nagai, K .
ISIJ INTERNATIONAL, 2004, 44 (03) :610-617
[10]   Joint contribution of transformation and twinning to the high strength-ductility combination of a FeMnCoCr high entropy alloy at cryogenic temperatures [J].
He, Z. F. ;
Jia, N. ;
Ma, D. ;
Yan, H. L. ;
Li, Z. M. ;
Raabe, D. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 759 :437-447