Contribution of Glial Cells to Polyglutamine Diseases: Observations from Patients and Mouse Models

被引:3
作者
Cvetanovic, Marija [1 ]
Gray, Michelle [2 ]
机构
[1] Univ Minnesota, Inst Translat Neurosci, Dept Neurosci, Minneapolis, MN USA
[2] Univ Alabama Birmingham, Dept Neurol, Ctr Neurodegenerat & Expt Therapeut, Birmingham, AL 35294 USA
基金
美国国家卫生研究院;
关键词
Glia; Polyglutamine; Huntington's disease; Spinocerebellar ataxia; EXPANDED CAG REPEAT; HUNTINGTONS-DISEASE; MUTANT HUNTINGTIN; MICROGLIAL ACTIVATION; TRANSGENIC MICE; BERGMANN GLIA; SPINOCEREBELLAR ATAXIAS; STRIATAL ASTROCYTES; PURKINJE NEURONS; BRAIN PATHOLOGY;
D O I
10.1007/s13311-023-01357-5
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Neurodegenerative diseases are broadly characterized neuropathologically by the degeneration of vulnerable neuronal cell types in a specific brain region. The degeneration of specific cell types has informed on the various phenotypes/clinical presentations in someone suffering from these diseases. Prominent neurodegeneration of specific neurons is seen in polyglutamine expansion diseases including Huntington's disease (HD) and spinocerebellar ataxias (SCA). The clinical manifestations observed in these diseases could be as varied as the abnormalities in motor function observed in those who have Huntington's disease (HD) as demonstrated by a chorea with substantial degeneration of striatal medium spiny neurons (MSNs) or those with various forms of spinocerebellar ataxia (SCA) with an ataxic motor presentation primarily due to degeneration of cerebellar Purkinje cells. Due to the very significant nature of the degeneration of MSNs in HD and Purkinje cells in SCAs, much of the research has centered around understanding the cell autonomous mechanisms dysregulated in these neuronal cell types. However, an increasing number of studies have revealed that dysfunction in non-neuronal glial cell types contributes to the pathogenesis of these diseases. Here we explore these non-neuronal glial cell types with a focus on how each may contribute to the pathogenesis of HD and SCA and the tools used to evaluate glial cells in the context of these diseases. Understanding the regulation of supportive and harmful phenotypes of glia in disease could lead to development of novel glia-focused neurotherapeutics.
引用
收藏
页码:48 / 66
页数:19
相关论文
共 191 条
[1]   Local self-renewal can sustain CNS microglia maintenance and function throughout adult life [J].
Ajami, Bahareh ;
Bennett, Jami L. ;
Krieger, Charles ;
Tetzlaff, Wolfram ;
Rossi, Fabio M. V. .
NATURE NEUROSCIENCE, 2007, 10 (12) :1538-1543
[2]   Single-nucleus RNA-seq identifies Huntington disease astrocyte states [J].
Al-Dalahmah, Osama ;
Sosunov, Alexander A. ;
Shaik, A. ;
Ofori, Kenneth ;
Liu, Yang ;
Vonsattel, Jean Paul ;
Adorjan, Istvan ;
Menon, Vilas ;
Goldman, James E. .
ACTA NEUROPATHOLOGICA COMMUNICATIONS, 2020, 8 (01)
[3]   Gliotransmitters Travel in Time and Space [J].
Araque, Alfonso ;
Carmignoto, Giorgio ;
Haydon, Philip G. ;
Oliet, Stephane H. R. ;
Robitaille, Richard ;
Volterra, Andrea .
NEURON, 2014, 81 (04) :728-739
[4]   RAN Translation in Huntington Disease [J].
Banez-Coronel, Monica ;
Ayhan, Fatma ;
Tarabochia, Alex D. ;
Zu, Tao ;
Perez, Barbara A. ;
Tusi, Solaleh Khoramian ;
Pletnikova, Olga ;
Borchelt, David R. ;
Ross, Christopher A. ;
Margolis, Russell L. ;
Yachnis, Anthony T. ;
Troncoso, Juan C. ;
Ranum, Laura P. W. .
NEURON, 2015, 88 (04) :667-677
[5]   Intrinsic mutant HTT-mediated defects in oligodendroglia cause myelination deficits and behavioral abnormalities in Huntington disease [J].
Bardile, Costanza Ferrari ;
Garcia-Miralles, Marta ;
Caron, Nicholas S. ;
Rayan, Nirmala Arul ;
Langley, Sarah R. ;
Harmston, Nathan ;
Rondelli, Ana Maria ;
Teo, Roy Tang Yi ;
Waltl, Sabine ;
Anderson, Lisa M. ;
Bae, Han-Gyu ;
Jung, Sangyong ;
Williams, Anna ;
Prabhakar, Shyam ;
Petretto, Enrico ;
Hayden, Michael R. ;
Pouladi, Mahmoud A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (19) :9622-9627
[6]   Myelin breakdown and iron changes in Huntington's disease: Pathogenesis and treatment implications [J].
Bartzokis, George ;
Lu, Po H. ;
Tishler, Todd A. ;
Fong, Sophia M. ;
Oluwadara, Bolanle ;
Finn, J. Paul ;
Huang, Danny ;
Bordelon, Yvette ;
Mintz, Jim ;
Perlman, Susan .
NEUROCHEMICAL RESEARCH, 2007, 32 (10) :1655-1664
[7]   Huntington disease [J].
Bates, Gillian P. ;
Dorsey, Ray ;
Gusella, James F. ;
Hayden, Michael R. ;
Kay, Chris ;
Leavitt, Blair R. ;
Nance, Martha ;
Ross, Christopher A. ;
Scahill, Rachael I. ;
Wetzel, Ronald ;
Wild, Edward J. ;
Tabrizi, Sarah J. .
NATURE REVIEWS DISEASE PRIMERS, 2015, 1
[8]   Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map [J].
Bayraktar, Omer Ali ;
Bartels, Theresa ;
Holmqvist, Staffan ;
Kleshchevnikov, Vitalii ;
Martirosyan, Araks ;
Polioudakis, Damon ;
Ben Haim, Lucile ;
Young, Adam M. H. ;
Batiuk, Mykhailo Y. ;
Prakash, Kirti ;
Brown, Alexander ;
Roberts, Kenny ;
Paredes, Mercedes F. ;
Kawaguchi, Riki ;
Stockley, John H. ;
Sabeur, Khalida ;
Chang, Sandra M. ;
Huang, Eric ;
Hutchinson, Peter ;
Ullian, Erik M. ;
Hemberg, Martin ;
Coppola, Giovanni ;
Holt, Matthew G. ;
Geschwind, Daniel H. ;
Rowitch, David H. .
NATURE NEUROSCIENCE, 2020, 23 (04) :500-+
[9]   Interactions between Purkinje neurones and bergmann glia [J].
Bellamy, Tomas C. .
CEREBELLUM, 2006, 5 (02) :116-126
[10]   A TCF7L2-responsive suppression of both homeostatic and compensatory remyelination in Huntington disease mice [J].
Benraiss, Abdellatif ;
Mariani, John N. ;
Tate, Ashley ;
Madsen, Pernille M. ;
Clark, Kathleen M. ;
Welle, Kevin A. ;
Solly, Renee ;
Capellano, Laetitia ;
Bentley, Karen ;
Chandler-Militello, Devin ;
Goldman, Steven A. .
CELL REPORTS, 2022, 40 (09)