Stochastic Volterra equations with time-changed Levy noise and maximum principles

被引:3
作者
di Nunno, Giulia [1 ,2 ]
Giordano, Michele [1 ]
机构
[1] Univ Oslo, Dept Math, POB 1053, N-0316 Oslo, Norway
[2] NHH Norwegian Sch Econ, Dept Business & Management Sci, Helleveien 30, N-5045 Bergen, Norway
关键词
Time-change; Conditionally independent increments; Backward stochastic Volterra integral equation; Maximum principle; Stochastic Volterra equations; Non-anticipating stochastic derivative; DRIVEN;
D O I
10.1007/s10479-023-05303-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Motivated by a problem of optimal harvesting of natural resources, we study a control problem for Volterra type dynamics driven by time-changed Levy noises, which are in general not Markovian. To exploit the nature of the noise, we make use of different kind of information flows within a maximum principle approach. For this we work with backward stochastic differential equations (BSDE) with time-change and exploit the non-anticipating stochastic derivative introduced in Di Nunno and Eide (Stoch Anal Appl 28:54-85, 2009). We prove both a sufficient and necessary stochastic maximum principle.
引用
收藏
页码:1265 / 1287
页数:23
相关论文
共 40 条
[1]   New approach to optimal control of stochastic Volterra integral equations [J].
Agram, Nacira ;
Oksendal, Bernt ;
Yakhlef, Samia .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2019, 91 (06) :873-894
[2]  
Agram N, 2018, EMS SER CONGR REP, P3
[3]   Malliavin Calculus and Optimal Control of Stochastic Volterra Equations [J].
Agram, Nacira ;
Oksendal, Bernt .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 167 (03) :1070-1094
[4]  
[Anonymous], 1990, ENCY MATH APPL
[5]  
Aovarez L. H. R., 1998, J MATH BIOL, V37
[6]   Stochastic systems with memory and jumps [J].
Banos, D. R. ;
Cordoni, F. ;
Di Nunno, G. ;
Di Persio, L. ;
Rose, E. E. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (09) :5772-5820
[7]  
Barndorff-Nielsen A., 2010, CHANGE TIME CHANGE M
[8]  
Belyakov AO, 2016, DYNAM MOD ECON ECON, V22, P149, DOI 10.1007/978-3-319-39120-5_9
[9]  
Bonaccorsi S., 2020, MATH CONTROL SIGNAL, P1
[10]   Electricity price modeling with stochastic time change [J].
Borovkova, Svetlana ;
Schmeck, Maren Diane .
ENERGY ECONOMICS, 2017, 63 :51-65