Existence of solutions for a double-phase variable exponent equation without the Ambrosetti-Rabinowitz condition

被引:20
作者
Liu, Jingjing [1 ]
Pucci, Patrizia [2 ]
机构
[1] Zhengzhou Univ Light Ind, Dept Math & Informat Sci, Henan 450002, Peoples R China
[2] Univ Perugia, Dept Math & Comp Sci, Via Vanvitelli 1, Perugia, Italy
基金
美国国家科学基金会;
关键词
double-phase; variable exponent Sobolev spaces; critical points; Cerami condition; FUNCTIONALS; REGULARITY; SPACES;
D O I
10.1515/anona-2022-0292
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The article deals with the existence of a pair of nontrivial nonnegative and nonpositive solutions for a nonlinear weighted quasilinear equation in RN, which involves a double-phase general variable exponent elliptic operator A. More precisely, A has behaviors like |xi| (q(x )-2) xi if |xi | is small and like |xi| (p(x )-2) xi if |xi | is large. Existence is proved by the Cerami condition instead of the classical Palais-Smale condition, so that the nonlinear term f(x, u) does not necessarily have to satisfy the Ambrosetti-Rabinowitz condition.
引用
收藏
页数:18
相关论文
共 25 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   On critical double phase Kirchhoff problems with singular nonlinearity [J].
Arora, Rakesh ;
Fiscella, Alessio ;
Mukherjee, Tuhina ;
Winkert, Patrick .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (03) :1079-1106
[3]   NON-AUTONOMOUS FUNCTIONALS, BORDERLINE CASES AND RELATED FUNCTION CLASSES [J].
Baroni, P. ;
Colombo, M. ;
Mingione, G. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (03) :347-379
[4]   Regularity for general functionals with double phase [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
[5]   Double phase problems with variable growth [J].
Cencelj, Matija ;
Radulescu, Vicentiu D. ;
Repovs, Dusan D. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 177 :270-287
[6]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[7]   Bounded Minimisers of Double Phase Variational Integrals [J].
Colombo, Maria ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 218 (01) :219-273
[8]   Regularity for Double Phase Variational Problems [J].
Colombo, Maria ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (02) :443-496
[9]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[10]   Local Lipschitz continuity for energy integrals with slow growth [J].
Eleuteri, Michela ;
Marcellini, Paolo ;
Mascolo, Elvira ;
Perrotta, Stefania .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (03) :1005-1032