Lie symmetry analysis for computing invariant manifolds associated with equilibrium solutions

被引:0
作者
Nezhad, Akbar Dehghan [1 ]
Zeabadi, Mina Moghaddam [1 ]
机构
[1] Iran Univ Sci & Technol, Sch Math & Comp Sci, Tehran, Iran
来源
COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS | 2024年 / 12卷 / 02期
关键词
Lie symmetry analysis; Parameterization method; Equilibrium solution; Eigenvalue problem; Invariant manifolds; Invariance equation; Tanh method; QUASI-PERIODIC MAPS; PARAMETERIZATION METHOD; COMPUTATION; TORI; WHISKERS;
D O I
10.22034/cmde.2023.54283.2268
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a novel computational approach for computing invariant manifolds that correspond to equilibrium solutions of nonlinear parabolic partial differential equations (or PDEs). Our computational method combines Lie symmetry analysis with the parameterization method. The equilibrium solutions of PDEs and the solutions of eigenvalue problems are exactly obtained. As the linearization of the studied nonlinear PDEs at equilibrium solutions yields zero eigenvalues, these solutions are non-hyperbolic, and some invariant manifolds are center manifolds. We use the parameterization method to model the infinitesimal invariance equations that parameterize the invariant manifolds. We utilize Lie symmetry analysis to solve the invariance equations. We apply our framework to investigate the Fisher equation and the Brain Tumor growth differential equation.
引用
收藏
页码:266 / 286
页数:21
相关论文
共 19 条
[1]   The parameterization method for invariant manifolds II: Regularity with respect to parameters [J].
Cabre, X ;
Fontich, E ;
De la Llave, R .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (02) :329-360
[2]   The parameterization method for invariant manifolds III:: Overview and applications [J].
Cabré, X ;
Fontich, E ;
de la Llave, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 218 (02) :444-515
[3]   The parameterization method for invariant manifolds I:: Manifolds associated to non-resonant subspaces [J].
Cabré, X ;
Fontich, E ;
De la Llave, R .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (02) :283-328
[4]   Parameterization Method for Computing Quasi-periodic Reducible Normally Hyperbolic Invariant Tori [J].
Canadell, Marta ;
Haro, Alex .
ADVANCES IN DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2014, 4 :85-94
[5]   Parameterization of Invariant Manifolds for Periodic Orbits I: Efficient Numerics via the Floquet Normal Form [J].
Castelli, Roberto ;
Lessard, Jean-Philippe ;
James, J. D. Mireles .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2015, 14 (01) :132-167
[6]   A Framework for the Numerical Computation and A Posteriori Verification of Invariant Objects of Evolution Equations [J].
Figueras, Jordi-Lluis ;
Gameiro, Marcio ;
Lessard, Jean-Philippe ;
de la Llave, Rafael .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2017, 16 (02) :1070-1088
[7]   TRIPLE COLLISIONS OF INVARIANT BUNDLES [J].
Figueras, Jordi-Lluis ;
Haro, Alex .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (08) :2069-2082
[8]   Reliable Computation of Robust Response Tori on the Verge of Breakdown [J].
Figueras, Jordi-Lluis ;
Haro, Alex .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2012, 11 (02) :597-628
[9]   The wave of advance of advantageous genes [J].
Fisher, RA .
ANNALS OF EUGENICS, 1937, 7 :355-369
[10]   A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Explorations and mechanisms for the breakdown of hyperbolicity [J].
Haro, A. ;
de la Llave, R. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2007, 6 (01) :142-207