Statistical characterization and exploitation of Synthetic Aperture radar vegetation indexes for the generation of Leaf area Index time series

被引:5
作者
Mastro, Pietro [1 ]
De Peppo, Margherita [2 ]
Crema, Alberto [2 ]
Boschetti, Mirco [2 ]
Pepe, Antonio [1 ]
机构
[1] Natl Res Council CNR Italy, Inst Electromagnet Sensing Environm IREA, 328 Diocleziano, I-80124 Naples, Italy
[2] Natl Res Council CNR Italy, Inst Electromagnet Sensing Environm IREA, 15 A Corti, I-20133 Milan, Italy
关键词
Synthetic Aperture Radar data; Optical data; Leaf Area Index; Vegetation indexes; Statistics; Multi-output Gaussian processes; SOIL-MOISTURE; LAI; REGRESSION; REFLECTANCE; VALIDATION; SENTINEL-1; PARAMETERS; RETRIEVAL; ALGORITHM;
D O I
10.1016/j.jag.2023.103498
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This study investigates the efficacy of Synthetic Aperture Radar (SAR)-based vegetation indexes for filling gaps in the optical-driven Leaf Area Index (LAI) time series. The statistical properties of coherent (e.g., interferometric coherence) and incoherent (e.g., backscattered signal) SAR vegetation indexes are systematically studied, including their correlation with LAI measurements and significance for LAI reconstruction. First, the MultiOutput Gaussian Process (MOGP) algorithm is selected, analyzed, and subsequently improved to handle the non-Gaussian distribution of the exploited SAR indexes. Hence, a refined MOGP method incorporating a quantile-transform (QT) operation is proposed. Experiments focus on the Arborea zone in Sardinia, Italy, exploiting one year of optical and radar images from the European Copernicus Sentinel-1/2 sensors. The results prove the usefulness of the refined MOGP model in obtaining LAI time series with reduced uncertainties (R2 = 0.9/0.7 training/validation) and filling gaps in optical-based LAI observations, reconstructing feasible crop dynamic along the season. The study also provides insights into phenological state evolution and implications for future applications of the presented method.
引用
收藏
页数:19
相关论文
共 61 条
[21]   A Time-Series Approach to Estimate Soil Moisture Using Polarimetric Radar Data [J].
Kim, Yunjin ;
van Zyl, Jakob J. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (08) :2519-2527
[22]   Relationships among the leaf area index, moisture availability, and spectral reflectance in an upland rice field [J].
Kimura, R ;
Okada, S ;
Miura, H ;
Kamichika, M .
AGRICULTURAL WATER MANAGEMENT, 2004, 69 (02) :83-100
[23]   Modeling SAR images with a generalization of the Rayleigh distribution [J].
Kuruoglu, EE ;
Zerubia, J .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (04) :527-533
[24]   SPECKLE ANALYSIS AND SMOOTHING OF SYNTHETIC APERTURE RADAR IMAGES [J].
LEE, JS .
COMPUTER GRAPHICS AND IMAGE PROCESSING, 1981, 17 (01) :24-32
[25]   Monitoring Sugarcane Growth Using ENVISAT ASAR Data [J].
Lin, Hui ;
Chen, Jinsong ;
Pei, Zhiyuan ;
Zhang, Songling ;
Hu, Xianzhi .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (08) :2572-2580
[26]   Remarks on multi-output Gaussian process regression [J].
Liu, Haitao ;
Cai, Jianfei ;
Ong, Yew-Soon .
KNOWLEDGE-BASED SYSTEMS, 2018, 144 :102-121
[27]   Polarimetric Response of Rice Fields at C-Band: Analysis and Phenology Retrieval [J].
Lopez-Sanchez, Juan M. ;
Vicente-Guijalba, Fernando ;
Ballester-Berman, J. David ;
Cloude, Shane R. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (05) :2977-2993
[28]   Leaf Area Index Estimation of Boreal and Subarctic Forests Using VV/HH ENVISAT/ASAR Data of Various Swaths [J].
Manninen, Terhikki ;
Stenberg, Pauline ;
Rautiainen, Miina ;
Voipio, Pekka .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (07) :3899-3909
[29]   Change Detection Techniques with Synthetic Aperture Radar Images: Experiments with Random Forests and Sentinel-1 Observations [J].
Mastro, Pietro ;
Masiello, Guido ;
Serio, Carmine ;
Pepe, Antonio .
REMOTE SENSING, 2022, 14 (14)
[30]   Sensitivity Analysis of Multi-Temporal Sentinel-1 SAR Parameters to Crop Height and Canopy Coverage [J].
Nasirzadehdizaji, Rouhollah ;
Sanli, Fusun Balik ;
Abdikan, Saygin ;
Cakir, Ziyadin ;
Sekertekin, Aliihsan ;
Ustuner, Mustafa .
APPLIED SCIENCES-BASEL, 2019, 9 (04)