Informing variant assessment using structured evidence from prior classifications (PS1, PM5, and PVS1 sequence variant interpretation criteria)

被引:1
作者
Bhat, Vineel [1 ]
Adzhubei, Ivan A. [2 ]
Fife, James D. [1 ]
Lebo, Matthew [3 ,4 ]
Cassa, Christopher A. [1 ,5 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Div Genet, Boston, MA USA
[2] Harvard Med Sch, Blavatnik Inst, Dept Biomed Informat, Boston, MA USA
[3] Mass Gen Brigham Personalized Med, Lab Mol Med, Boston, MA USA
[4] Harvard Med Sch, Brigham & Womens Hosp, Dept Pathol, Boston, MA USA
[5] Harvard Med Sch, Brigham & Womens Hosp, Div Genet, 77 Ave Louis Pasteur 464D, Boston, MA 02115 USA
关键词
ACMG; AMP; ClinVar; PS1; PM5; PVS1; evidence; Sequence variant interpretation; guidelines; Variants of uncertainsignificance; GUIDELINES;
D O I
10.1016/j.gim.2022.09.009
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Purpose: This study aimed to explore whether evidence of pathogenicity from prior variant classifications in ClinVar could be used to inform variant interpretation using the American College of Medical Genetics and Genomics/Association for Molecular Pathology clinical guidelines.Methods: We identified distinct single-nucleotide variants (SNVs) that are either similar in location or in functional consequence to pathogenic variants in ClinVar and analyzed evidence in support of pathogenicity using 3 interpretation criteria.Results: Thousands of variants, including many in clinically actionable disease genes (American College of Medical Genetics and Genomics secondary findings v3.0), have evidence of path-ogenicity from existing variant classifications, accounting for 2.5% of nonsynonymous SNVs within ClinVar. Notably, there are many variants with uncertain or conflicting classifications that cause the same amino acid substitution as other pathogenic variants (PS1, N = 323), variants that are predicted to cause different amino acid substitutions in the same codon as pathogenic var-iants (PM5, N = 7692), and loss-of-function variants that are present in genes in which many loss-of-function variants are classified as pathogenic (PVS1, N = 3635). Most of these variants have similar computational predictions of pathogenicity and splicing effect as their associated pathogenic variants.Conclusion: Broadly, for >1.4 million SNVs exome wide, information from previously clas-sified variants could be used to provide evidence of pathogenicity. We have developed a pipeline to identify variants meeting these criteria that may inform interpretation efforts.(c) 2022 American College of Medical Genetics and Genomics. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:16 / 26
页数:11
相关论文
共 26 条
  • [1] Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion
    Abou Tayoun, Ahmad N.
    Pesaran, Tina
    DiStefano, Marina T.
    Oza, Andrea
    Rehm, Heidi L.
    Biesecker, Leslie G.
    Harrison, Steven M.
    [J]. HUMAN MUTATION, 2018, 39 (11) : 1517 - 1524
  • [2] Performance of ACMG-AMP Variant-Interpretation Guidelines among Nine Laboratories in the Clinical Sequencing Exploratory Research Consortium
    Amendola, Laura M.
    Jarvik, Gail P.
    Leo, Michael C.
    McLaughlin, Heather M.
    Akkari, Yassmine
    Amaral, Michelle D.
    Berg, Jonathan S.
    Biswas, Sawona
    Bowling, Kevin M.
    Conlin, Laura K.
    Cooper, Greg M.
    Dorschner, Michael O.
    Dulik, Matthew C.
    Ghazani, Arezou A.
    Ghosh, Rajarshi
    Green, Robert C.
    Hart, Ragan
    Horton, Carrie
    Johnston, Jennifer J.
    Lebo, Matthew S.
    Milosavljevic, Aleksandar
    Ou, Jeffrey
    Pak, Christine M.
    Patel, Ronak Y.
    Punj, Sumit
    Richards, Carolyn Sue
    Salama, Joseph
    Strande, Natasha T.
    Yang, Yaping
    Plon, Sharon E.
    Biesecker, Leslie G.
    Rehm, Heidi L.
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2016, 98 (06) : 1067 - 1076
  • [3] Association for Molecular Pathology, 2021, ASS MOL PATH POS STA
  • [4] Adverse Events in Cancer Genetic Testing: The Third Case Series
    Bonadies, Danielle C.
    Brierley, Karina L.
    Barnett, Rachel E.
    Baxter, Melanie D.
    Donenberg, Talia
    Ducaine, Whitney L.
    Ernstx, Michelle E.
    Homer, Jeanne
    Judkins, Megan
    Lovick, Niki M.
    Powers, Jacquelyn M.
    Stanislaw, Christine
    Stark, Elizabeth
    Stenner, Rio C.
    Matloff, Ellen T.
    [J]. CANCER JOURNAL, 2014, 20 (04) : 246 - 253
  • [5] Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework
    Brnich, Sarah E.
    Abou Tayoun, Ahmad N.
    Couch, Fergus J.
    Cutting, Garry R.
    Greenblatt, Marc S.
    Heinen, Christopher D.
    Kanavy, Dona M.
    Luo, Xi
    McNulty, Shannon M.
    Starita, Lea M.
    Tavtigian, Sean, V
    Wright, Matt W.
    Harrison, Steven M.
    Biesecker, Leslie G.
    Berg, Jonathan S.
    Brenner, Steven E.
    Ellard, Sian
    Karbassi, Izabela
    Karchin, Rachel
    Mester, Jessica L.
    O'Donnell-Luria, Anne
    Pesaran, Tina
    Plon, Sharon E.
    Rehm, Heidi
    Topper, Scott
    [J]. GENOME MEDICINE, 2019, 12 (01)
  • [6] Estimating the selective effects of heterozygous protein-truncating variants from human exome data
    Cassa, Christopher A.
    Weghorn, Donate
    Balick, Daniel J.
    Jordan, Daniel M.
    Nusinow, David
    Samocha, Kaitlin E.
    O'Donnell-Luria, Anne
    MacArthur, Daniel G.
    Daly, Mark J.
    Beier, David R.
    Sunyaev, Shamil R.
    [J]. NATURE GENETICS, 2017, 49 (05) : 806 - +
  • [7] Clinical Genome Resource, SEQ VAR INT SVI GEN
  • [8] Accurate classification of BRCA1 variants with saturation genome editing
    Findlay, Gregory M.
    Daza, Riza M.
    Martin, Beth
    Zhang, Melissa D.
    Leith, Anh P.
    Gasperini, Molly
    Janizek, Joseph D.
    Huang, Xingfan
    Starita, Lea M.
    Shendure, Jay
    [J]. NATURE, 2018, 562 (7726) : 217 - +
  • [9] Strategic vision for improving human health at The Forefront of Genomics
    Green, Eric D.
    Gunter, Chris
    Biesecker, Leslie G.
    Di Francesco, Valentina
    Easter, Carla L.
    Feingold, Elise A.
    Felsenfeld, Adam L.
    Kaufman, David J.
    Ostrander, Elaine A.
    Pavan, William J.
    Phillippy, Adam M.
    Wise, Anastasia L.
    Dayal, Jyoti Gupta
    Kish, Britny J.
    Mandich, Allison
    Wellington, Christopher R.
    Wetterstrand, Kris A.
    Bates, Sarah A.
    Leja, Darryl
    Vasquez, Susan
    Gahl, William A.
    Graham, Bettie J.
    Kastner, Daniel L.
    Liu, Paul
    Rodriguez, Laura Lyman
    Solomon, Benjamin D.
    Bonham, Vence L.
    Brody, Lawrence C.
    Hutter, Carolyn M.
    Manolio, Teri A.
    [J]. NATURE, 2020, 586 (7831) : 683 - 692
  • [10] Is 'likely pathogenic' really 90% likely? Reclassification data in ClinVar
    Harrison, Steven M.
    Rehm, Heidi L.
    [J]. GENOME MEDICINE, 2019, 11 (01)