Cycles of a given length in tournaments

被引:1
作者
Grzesik, Andrzej [1 ]
Kral', Daniel [2 ,3 ,4 ]
Lovasz, Laszlo M. [5 ]
Volec, Jan [6 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, Lojasiewicza 6, PL-30348 Krakow, Poland
[2] Masaryk Univ, Fac Informat, Bot 68A, Brno 60200, Czech Republic
[3] Univ Warwick, Math Inst, DIMAP, Coventry CV4 7AL, W Midlands, England
[4] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England
[5] MIT, Dept Math, Cambridge, MA 02139 USA
[6] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math, Trojanova 13, Prague 12000, Czech Republic
基金
欧洲研究理事会;
关键词
Tournament; Oriented cycle; Theory of combinatorial limits; Extremal graph theory; 5-CYCLES; NUMBER;
D O I
10.1016/j.jctb.2022.07.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the asymptotic behavior of the maximum number of directed cycles of a given length in a tournament: let c(l) be the limit of the ratio of the maximum number of cycles of length l in an n-vertex tournament and the expected number of cycles of length l in the random n-vertex tournament, when n tends to infinity. It is well-known that c(3) = 1 and c(4) = 4/3. We show that c(l) = 1 if and only if l is not divisible by four, which settles a conjecture of Bartley and Day. If l is divisible by four, we show that 1 + 2 center dot (2/pi)(l) <= c(l) <= 1 + (2/pi+ o(1))(l) and determine the value c(l) exactly for l = 8. We also give a full description of the asymptotic structure of tournaments with the maximum number of cycles of length l when l is not divisible by four or l is an element of{4, 8}. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:117 / 145
页数:29
相关论文
共 25 条
[1]  
Bartley J.P., 2018, Ph.D. thesis
[2]  
Beineke L., 1965, CAN MATH B, V8, P491
[3]   Convergent sequences of dense graphs II. Multiway cuts and statistical physics [J].
Borgs, C. ;
Chayes, J. T. ;
Lovasz, L. ;
Sos, V. T. ;
Vesztergombi, K. .
ANNALS OF MATHEMATICS, 2012, 176 (01) :151-219
[4]  
BRAUER A, 1968, B AM MATH SOC, V74, P1133, DOI 10.1090/S0002-9904-1968-12079-8
[5]   TOURNAMENT QUASIRANDOMNESS FROM LOCAL COUNTING [J].
Bucic, Matija ;
Long, Eoin ;
Shapira, Asaf ;
Sudakov, Benny .
COMBINATORICA, 2021, 41 (02) :175-208
[6]   Cycles of length three and four in tournaments [J].
Chan, Timothy F. N. ;
Grzesik, Andrzej ;
Kral, Daniel ;
Noel, Jonathan A. .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 175
[7]  
Colombo U., 1964, Boll. Un. Mat. Ital., V19, P153
[8]  
Coregliano LN, 2019, ELECTRON J COMB, V26
[9]   On the Density of Transitive Tournaments [J].
Coregliano, Leonardo Nagami ;
Razborov, Alexander A. .
JOURNAL OF GRAPH THEORY, 2017, 85 (01) :12-21
[10]  
Day A.N., 2017, Ph.D. thesis