MaxCorrMGNN: A Multi-graph Neural Network Framework for Generalized Multimodal Fusion of Medical Data for Outcome Prediction

被引:0
作者
D'Souza, Niharika S. [1 ]
Wang, Hongzhi [1 ]
Giovannini, Andrea [2 ]
Foncubierta-Rodriguez, Antonio [2 ]
Beck, Kristen L. [1 ]
Boyko, Orest [3 ]
Syeda-Mahmood, Tanveer [1 ]
机构
[1] IBM Res Almaden, San Jose, CA 95120 USA
[2] IBM Res, Zurich, Switzerland
[3] Dept Radiol, VA Southern Nevada Healthcare Syst, Las Vegas, NV USA
来源
MACHINE LEARNING FOR MULTIMODAL HEALTHCARE DATA, ML4MHD 2023 | 2024年 / 14315卷
关键词
Multimodal Fusion; Hirschfeld-Gebelein-Renyi (HGR) maximal correlation; Multi-Layered Graphs; Multi-Graph Neural Networks;
D O I
10.1007/978-3-031-47679-2_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the emergence of multimodal electronic health records, the evidence for an outcome may be captured across multiple modalities ranging from clinical to imaging and genomic data. Predicting outcomes effectively requires fusion frameworks capable of modeling finegrained and multi-faceted complex interactions between modality features within and across patients. We develop an innovative fusion approach called MaxCorr MGNN that models non-linear modality correlations within and across patients through Hirschfeld-Gebelein-Renyi maximal correlation (MaxCorr) embeddings, resulting in a multi-layered graph that preserves the identities of the modalities and patients. We then design, for the first time, a generalized multi-layered graph neural network (MGNN) for task-informed reasoning in multi-layered graphs, that learns the parameters defining patient-modality graph connectivity and message passing in an end-to-end fashion. We evaluate our model an outcome prediction task on a Tuberculosis (TB) dataset consistently out-performing several state-of-the-art neural, graph-based and traditional fusion techniques.
引用
收藏
页码:141 / 154
页数:14
相关论文
共 26 条
  • [11] TB DEPOT (Data Exploration Portal): A multi-domain tuberculosis data analysis resource
    Gabrielian, Andrei
    Engle, Eric
    Harris, Michael
    Wollenberg, Kurt
    Juarez-Espinosa, Octavio
    Glogowski, Alexander
    Long, Alyssa
    Patti, Lisa
    Hurt, Darrell E.
    Rosenthal, Alex
    Tartakovsky, Mike
    [J]. PLOS ONE, 2019, 14 (05):
  • [12] Densely Connected Convolutional Networks
    Huang, Gao
    Liu, Zhuang
    van der Maaten, Laurens
    Weinberger, Kilian Q.
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2261 - 2269
  • [13] InterProScan 5: genome-scale protein function classification
    Jones, Philip
    Binns, David
    Chang, Hsin-Yu
    Fraser, Matthew
    Li, Weizhong
    McAnulla, Craig
    McWilliam, Hamish
    Maslen, John
    Mitchell, Alex
    Nuka, Gift
    Pesseat, Sebastien
    Quinn, Antony F.
    Sangrador-Vegas, Amaia
    Scheremetjew, Maxim
    Yong, Siew-Yit
    Lopez, Rodrigo
    Hunter, Sarah
    [J]. BIOINFORMATICS, 2014, 30 (09) : 1236 - 1240
  • [14] Lahat D, 2015, P IEEE, V103, P1449, DOI 10.1109/JPROC.2015.2460697
  • [15] Loshchilov I, 2019, Arxiv, DOI [arXiv:1711.05101, DOI 10.48550/ARXIV.1711.05101]
  • [16] Muñoz-Sellart M, 2010, INT J TUBERC LUNG D, V14, P973
  • [17] Kipf TN, 2017, Arxiv, DOI [arXiv:1609.02907, DOI 10.48550/ARXIV.1609.02907]
  • [18] Subramanian V, 2021, Arxiv, DOI arXiv:2111.13987
  • [19] Subramanian V, 2020, I S BIOMED IMAGING, P804, DOI [10.1109/ISBI45749.2020.9098545, 10.1109/isbi45749.2020.9098545]
  • [20] Veličkovic P, 2018, Arxiv, DOI [arXiv:1710.10903, DOI 10.48550/ARXIV.1710.10903]