MaxCorrMGNN: A Multi-graph Neural Network Framework for Generalized Multimodal Fusion of Medical Data for Outcome Prediction

被引:0
作者
D'Souza, Niharika S. [1 ]
Wang, Hongzhi [1 ]
Giovannini, Andrea [2 ]
Foncubierta-Rodriguez, Antonio [2 ]
Beck, Kristen L. [1 ]
Boyko, Orest [3 ]
Syeda-Mahmood, Tanveer [1 ]
机构
[1] IBM Res Almaden, San Jose, CA 95120 USA
[2] IBM Res, Zurich, Switzerland
[3] Dept Radiol, VA Southern Nevada Healthcare Syst, Las Vegas, NV USA
来源
MACHINE LEARNING FOR MULTIMODAL HEALTHCARE DATA, ML4MHD 2023 | 2024年 / 14315卷
关键词
Multimodal Fusion; Hirschfeld-Gebelein-Renyi (HGR) maximal correlation; Multi-Layered Graphs; Multi-Graph Neural Networks;
D O I
10.1007/978-3-031-47679-2_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the emergence of multimodal electronic health records, the evidence for an outcome may be captured across multiple modalities ranging from clinical to imaging and genomic data. Predicting outcomes effectively requires fusion frameworks capable of modeling finegrained and multi-faceted complex interactions between modality features within and across patients. We develop an innovative fusion approach called MaxCorr MGNN that models non-linear modality correlations within and across patients through Hirschfeld-Gebelein-Renyi maximal correlation (MaxCorr) embeddings, resulting in a multi-layered graph that preserves the identities of the modalities and patients. We then design, for the first time, a generalized multi-layered graph neural network (MGNN) for task-informed reasoning in multi-layered graphs, that learns the parameters defining patient-modality graph connectivity and message passing in an end-to-end fashion. We evaluate our model an outcome prediction task on a Tuberculosis (TB) dataset consistently out-performing several state-of-the-art neural, graph-based and traditional fusion techniques.
引用
收藏
页码:141 / 154
页数:14
相关论文
共 26 条
  • [1] Multimodal Machine Learning: A Survey and Taxonomy
    Baltrusaitis, Tadas
    Ahuja, Chaitanya
    Morency, Louis-Philippe
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (02) : 423 - 443
  • [2] Cosmo Luca, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12262), P643, DOI 10.1007/978-3-030-59713-9_62
  • [3] Cozzo E., 2018, Multiplex Networks, DOI DOI 10.1007/978-3-319-92255-3
  • [4] Deep sr-DDL: Deep structurally regularized dynamic dictionary learning to integrate multimodal and dynamic functional connectomics data for multidimensional clinical characterizations
    D'Souza, N. S.
    Nebel, M. B.
    Crocetti, D.
    Robinson, J.
    Wymbs, N.
    Mostofsky, S. H.
    Venkataraman, A.
    [J]. NEUROIMAGE, 2021, 241
  • [5] D'Souza Niharika Shimona, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12267), P437, DOI 10.1007/978-3-030-59728-3_43
  • [6] Fusing Modalities by Multiplexed Graph Neural Networks for Outcome Prediction in Tuberculosis
    D'Souza, Niharika S.
    Wang, Hongzhi
    Giovannini, Andrea
    Foncubierta-Rodriguez, Antonio
    Beck, Kristen L.
    Boyko, Orest
    Syeda-Mahmood, Tanveer
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VII, 2022, 13437 : 287 - 297
  • [7] D'Souza NS, 2021, PR MACH LEARN RES, V143, P119
  • [8] A Matrix Autoencoder Framework to Align the Functional and Structural Connectivity Manifolds as Guided by Behavioral Phenotypes
    D'Souza, Niharika Shimona
    Nebel, Mary Beth
    Crocetti, Deana
    Robinson, Joshua
    Mostofsky, Stewart
    Venkataraman, Archana
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT VII, 2021, 12907 : 625 - 636
  • [9] COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH
    DELONG, ER
    DELONG, DM
    CLARKEPEARSON, DI
    [J]. BIOMETRICS, 1988, 44 (03) : 837 - 845
  • [10] Seabolt EE, 2020, Arxiv, DOI arXiv:1911.02095