BIDCell: Biologically-informed self-supervised learning for segmentation of subcellular spatial transcriptomics data

被引:21
作者
Fu, Xiaohang [1 ,2 ,3 ,4 ,5 ]
Lin, Yingxin [1 ,3 ,4 ,5 ]
Lin, David M. [6 ]
Mechtersheimer, Daniel [1 ,3 ,4 ]
Wang, Chuhan [2 ,3 ,5 ]
Ameen, Farhan [1 ,3 ,4 ]
Ghazanfar, Shila [1 ,3 ,4 ]
Patrick, Ellis [1 ,3 ,4 ,5 ,7 ]
Kim, Jinman [2 ,3 ,5 ]
Yang, Jean Y. H. [1 ,3 ,4 ,5 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[2] Univ Sydney, Sch Comp Sci, Sydney, NSW 2006, Australia
[3] Univ Sydney, Sydney Precis Data Sci Ctr, Sydney, NSW 2006, Australia
[4] Univ Sydney, Charles Perkins Ctr, Sydney, NSW 2006, Australia
[5] Lab Data Discovery Hlth Ltd D24H, Sci Pk, Hong Kong, Peoples R China
[6] Cornell Univ, Dept Biomed Sci, Ithaca, NY 14850 USA
[7] Westmead Inst Med Res, Sydney, NSW 2145, Australia
基金
澳大利亚研究理事会; 澳大利亚国家健康与医学研究理事会;
关键词
HIPPOCAMPUS; ATLAS;
D O I
10.1038/s41467-023-44560-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent advances in subcellular imaging transcriptomics platforms have enabled high-resolution spatial mapping of gene expression, while also introducing significant analytical challenges in accurately identifying cells and assigning transcripts. Existing methods grapple with cell segmentation, frequently leading to fragmented cells or oversized cells that capture contaminated expression. To this end, we present BIDCell, a self-supervised deep learning-based framework with biologically-informed loss functions that learn relationships between spatially resolved gene expression and cell morphology. BIDCell incorporates cell-type data, including single-cell transcriptomics data from public repositories, with cell morphology information. Using a comprehensive evaluation framework consisting of metrics in five complementary categories for cell segmentation performance, we demonstrate that BIDCell outperforms other state-of-the-art methods according to many metrics across a variety of tissue types and technology platforms. Our findings underscore the potential of BIDCell to significantly enhance single-cell spatial expression analyses, enabling great potential in biological discovery. Subcellular in situ spatial transcriptomics offers the promise to address biological problems that were previously inaccessible but requires accurate cell segmentation to uncover insights. Here, authors present BIDCell, a biologically informed, deep learning-based cell segmentation framework.
引用
收藏
页数:17
相关论文
共 37 条
[1]  
10xgenomics, Using baysor to perform xenium cell segmentation
[2]  
Ba J, 2014, ACS SYM SER
[3]   The hippocampus and memory: insights from spatial processing [J].
Bird, Chris M. ;
Burgess, Neil .
NATURE REVIEWS NEUROSCIENCE, 2008, 9 (03) :182-194
[4]   Synaptogenic activity of the axon guidance molecule Robo2 underlies hippocampal circuit function [J].
Blockus, Heike ;
Rolotti, Sebi, V ;
Szoboszlay, Miklos ;
Peze-Heidsieck, Eugenie ;
Ming, Tiffany ;
Schroeder, Anna ;
Apostolo, Nuno ;
Vennekens, Kristel M. ;
Katsamba, Phinikoula S. ;
Bahna, Fabiana ;
Mannepalli, Seetha ;
Ahlsen, Goran ;
Honig, Barry ;
Shapiro, Lawrence ;
de Wit, Joris ;
Losonczy, Attila ;
Polleux, Franck .
CELL REPORTS, 2021, 37 (03)
[5]   The single-cell transcriptional landscape of mammalian organogenesis [J].
Cao, Junyue ;
Spielmann, Malte ;
Qiu, Xiaojie ;
Huang, Xingfan ;
Ibrahim, Daniel M. ;
Hill, Andrew J. ;
Zhang, Fan ;
Mundlos, Stefan ;
Christiansen, Lena ;
Steemers, Frank J. ;
Trapnell, Cole ;
Shendure, Jay .
NATURE, 2019, 566 (7745) :496-+
[6]   A benchmark study of simulation methods for single-cell RNA sequencing data [J].
Cao, Yue ;
Yang, Pengyi ;
Yang, Jean Yee Hwa .
NATURE COMMUNICATIONS, 2021, 12 (01)
[7]   Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays [J].
Chen, Ao ;
Liao, Sha ;
Cheng, Mengnan ;
Ma, Kailong ;
Wu, Liang ;
Lai, Yiwei ;
Qiu, Xiaojie ;
Yang, Jin ;
Xu, Jiangshan ;
Hao, Shijie ;
Wang, Xin ;
Lu, Huifang ;
Chen, Xi ;
Liu, Xing ;
Huang, Xin ;
Li, Zhao ;
Hong, Yan ;
Jiang, Yujia ;
Peng, Jian ;
Liu, Shuai ;
Shen, Mengzhe ;
Liu, Chuanyu ;
Li, Quanshui ;
Yuan, Yue ;
Wei, Xiaoyu ;
Zheng, Huiwen ;
Feng, Weimin ;
Wang, Zhifeng ;
Liu, Yang ;
Wang, Zhaohui ;
Yang, Yunzhi ;
Xiang, Haitao ;
Han, Lei ;
Qin, Baoming ;
Guo, Pengcheng ;
Lai, Guangyao ;
Munoz-Canoves, Pura ;
Maxwell, Patrick H. ;
Thiery, Jean Paul ;
Wu, Qing-Feng ;
Zhao, Fuxiang ;
Chen, Bichao ;
Li, Mei ;
Dai, Xi ;
Wang, Shuai ;
Kuang, Haoyan ;
Hui, Junhou ;
Wang, Liqun ;
Fei, Ji-Feng ;
Wang, Ou .
CELL, 2022, 185 (10) :1777-+
[8]   SCS: cell segmentation for high-resolution spatial transcriptomics [J].
Chen, Hao ;
Li, Dongshunyi ;
Bar-Joseph, Ziv .
NATURE METHODS, 2023, 20 (08) :1237-+
[9]   Genomic-anatomic evidence for distinct functional domains in hippocampal field CA1 [J].
Dong, Hong-Wei ;
Swanson, Larry W. ;
Chen, Lin ;
Fanselow, Michael S. ;
Toga, Arthur W. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (28) :11794-11799
[10]  
Fu X., 2023, Bidcell: Biologically-informed self-supervised learning for segmentation of subcellular spatial transcriptomics data, DOI [10.5281/zenodo.10295991, DOI 10.5281/ZENODO.10295991]