CSPPartial-YOLO: A Lightweight YOLO-Based Method for Typical Objects Detection in Remote Sensing Images

被引:20
|
作者
Xie, Siyu [1 ,2 ]
Zhou, Mei [1 ]
Wang, Chunle [1 ]
Huang, Shisheng [3 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Dept Space Microwave Remote Sensing Syst, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
[3] Beijing Inst Tracking & Telecommun Technol, Beijing 100094, Peoples R China
关键词
Deep learning; object detection; partial convolution; remote sensing image;
D O I
10.1109/JSTARS.2023.3329235
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Detecting and recognizing objects are crucial steps in interpreting remote sensing images. At present, deep learning methods are predominantly employed for detecting objects in remote sensing images, necessitating a significant number of floating-point computations. However, low computing power and small storage in computing devices are hard to afford the large model parameter quantity and high computing complexity. To address these constraints, this article presents a lightweight detection model called CSPPartial-YOLO. This model introduces the partial hybrid dilated convolution (PHDC) Block module that combines hybrid dilated convolutions and partial convolutions to increase the receptive field at a low computational cost. By using the PHDC Block within the model design framework of cross-stage partial connection, we construct CSPPartialStage that reduces computational burden without compromising accuracy. Coordinate attention module is also employed in CSPPartialStage to aggregate position information and improve the detection of small objects with complex distributions in remote sensing images. A backbone and neck are developed with CSPPartialStage, and the rotation head of the PPYOLOE-R model adapts to objects of multiple orientations in remote sensing images. Empirical experiments using the dataset for object deTection in aerial images (DOTA) dataset and a large-scale small object detection dAtaset (SODA-A) dataset indicate that our method is faster and resource efficient than the baseline model (PPYOLOE-R), while achieving higher accuracy. Furthermore, comparisons with current state-of-the-art YOLO series detectors show our proposed model's competitiveness in terms of speed and accuracy. Moreover, compared to mainstream lightweight networks, our model exhibits better hardware adaptability, with lower inference latency and higher detection accuracy.
引用
收藏
页码:388 / 399
页数:12
相关论文
共 50 条
  • [31] Research and optimization of YOLO-based method for automatic pavement defect detection
    Yao, Hui
    Fan, Yaning
    Wei, Xinyue
    Liu, Yanhao
    Cao, Dandan
    You, Zhanping
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (03): : 1708 - 1730
  • [32] YOLO-Anti: YOLO-based counterattack model for unseen congested object detection
    Wang, Kun
    Liu, Maozhen
    PATTERN RECOGNITION, 2022, 131
  • [33] Automatic Detection of Brain Tumor on MRI Images Using a YOLO-Based Algorithm
    Rahimi, Masume
    Mostafavi, Mohammad
    Arabameri, Abazar
    PROCEEDINGS OF THE 13TH IRANIAN/3RD INTERNATIONAL MACHINE VISION AND IMAGE PROCESSING CONFERENCE, MVIP, 2024, : 87 - 91
  • [34] BA-YOLO for Object Detection in Satellite Remote Sensing Images
    Wang, Kuilin
    Liu, Zhenze
    APPLIED SCIENCES-BASEL, 2023, 13 (24):
  • [35] FFCA-YOLO for Small Object Detection in Remote Sensing Images
    Zhang, Yin
    Ye, Mu
    Zhu, Guiyi
    Liu, Yong
    Guo, Pengyu
    Yan, Junhua
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15
  • [36] YOLO-RMS: A Lightweight and Efficient Detector for Object Detection in Remote Sensing
    Liu, Fengwen
    Hu, Wenqiang
    Hu, Huan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [37] CEH-YOLO: A composite enhanced YOLO-based model for underwater object detection
    Feng, Jiangfan
    Jin, Tao
    ECOLOGICAL INFORMATICS, 2024, 82
  • [38] A YOLO-Based Method for Oblique Car License Plate Detection and Recognition
    Li, Wei-Chen
    Hsu, Ting-Hsuan
    Huang, Ke-Nung
    Wang, Chou-Chen
    22ND IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD 2021-FALL), 2021, : 134 - 137
  • [39] A Yolo-Based Model for Breast Cancer Detection in Mammograms
    Francesco Prinzi
    Marco Insalaco
    Alessia Orlando
    Salvatore Gaglio
    Salvatore Vitabile
    Cognitive Computation, 2024, 16 : 107 - 120
  • [40] A Defect Detection Method Based on BC-YOLO for Transmission Line Components in UAV Remote Sensing Images
    Bao, Wenxia
    Du, Xiang
    Wang, Nian
    Yuan, Mu
    Yang, Xianjun
    REMOTE SENSING, 2022, 14 (20)