CSPPartial-YOLO: A Lightweight YOLO-Based Method for Typical Objects Detection in Remote Sensing Images

被引:20
|
作者
Xie, Siyu [1 ,2 ]
Zhou, Mei [1 ]
Wang, Chunle [1 ]
Huang, Shisheng [3 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Dept Space Microwave Remote Sensing Syst, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
[3] Beijing Inst Tracking & Telecommun Technol, Beijing 100094, Peoples R China
关键词
Deep learning; object detection; partial convolution; remote sensing image;
D O I
10.1109/JSTARS.2023.3329235
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Detecting and recognizing objects are crucial steps in interpreting remote sensing images. At present, deep learning methods are predominantly employed for detecting objects in remote sensing images, necessitating a significant number of floating-point computations. However, low computing power and small storage in computing devices are hard to afford the large model parameter quantity and high computing complexity. To address these constraints, this article presents a lightweight detection model called CSPPartial-YOLO. This model introduces the partial hybrid dilated convolution (PHDC) Block module that combines hybrid dilated convolutions and partial convolutions to increase the receptive field at a low computational cost. By using the PHDC Block within the model design framework of cross-stage partial connection, we construct CSPPartialStage that reduces computational burden without compromising accuracy. Coordinate attention module is also employed in CSPPartialStage to aggregate position information and improve the detection of small objects with complex distributions in remote sensing images. A backbone and neck are developed with CSPPartialStage, and the rotation head of the PPYOLOE-R model adapts to objects of multiple orientations in remote sensing images. Empirical experiments using the dataset for object deTection in aerial images (DOTA) dataset and a large-scale small object detection dAtaset (SODA-A) dataset indicate that our method is faster and resource efficient than the baseline model (PPYOLOE-R), while achieving higher accuracy. Furthermore, comparisons with current state-of-the-art YOLO series detectors show our proposed model's competitiveness in terms of speed and accuracy. Moreover, compared to mainstream lightweight networks, our model exhibits better hardware adaptability, with lower inference latency and higher detection accuracy.
引用
收藏
页码:388 / 399
页数:12
相关论文
共 50 条
  • [31] YOLO-based Object Detection Models: A Review and its Applications
    Vijayakumar, Ajantha
    Vairavasundaram, Subramaniyaswamy
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (35) : 83535 - 83574
  • [32] SeMo-YOLO: A Multiscale Object Detection Network in Satellite Remote Sensing Images
    Li, Peng
    Che, Cheng
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [33] YOLO-RS: A More Accurate and Faster Object Detection Method for Remote Sensing Images
    Xie, Tianyi
    Han, Wen
    Xu, Sheng
    REMOTE SENSING, 2023, 15 (15)
  • [34] Remote sensing object detection based on YOLO and embedded systems
    Lin Yu
    Dong Zhenghong
    Xia Lurui
    Wang Junwei
    AOPC 2020: DISPLAY TECHNOLOGY; PHOTONIC MEMS, THZ MEMS, AND METAMATERIALS; AND AI IN OPTICS AND PHOTONICS, 2020, 11565
  • [35] A new YOLO-based method for real-time crowd detection from video and performance analysis of YOLO models
    Gunduz, Mehmet Sirin
    Isik, Gultekin
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2023, 20 (01)
  • [36] RescueNet: YOLO-based object detection model for detection and counting of flood survivors
    Prabhu, B. V. Balaji
    Lakshmi, R.
    Ankitha, R.
    Prateeksha, M. S.
    Priya, N. C.
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2022, 8 (04) : 4509 - 4516
  • [37] RescueNet: YOLO-based object detection model for detection and counting of flood survivors
    B. V. Balaji Prabhu
    R. Lakshmi
    R. Ankitha
    M. S. Prateeksha
    N. C. Priya
    Modeling Earth Systems and Environment, 2022, 8 : 4509 - 4516
  • [38] Remote safety system for a robot tractor using a monocular camera and a YOLO-based method
    Chen, Sixun
    Noguchi, Noboru
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 215
  • [39] YOLO-Based Deep Learning Model for Pressure Ulcer Detection and Classification
    Aldughayfiq, Bader
    Ashfaq, Farzeen
    Jhanjhi, N. Z.
    Humayun, Mamoona
    HEALTHCARE, 2023, 11 (09)
  • [40] Object Detection Method Based on Improved YOLO Lightweight Network
    Li Chengyue
    Yao Jianmin
    Lin Zhixian
    Yan Qun
    Fan Baoqing
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (14)