CSPPartial-YOLO: A Lightweight YOLO-Based Method for Typical Objects Detection in Remote Sensing Images

被引:20
|
作者
Xie, Siyu [1 ,2 ]
Zhou, Mei [1 ]
Wang, Chunle [1 ]
Huang, Shisheng [3 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Dept Space Microwave Remote Sensing Syst, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
[3] Beijing Inst Tracking & Telecommun Technol, Beijing 100094, Peoples R China
关键词
Deep learning; object detection; partial convolution; remote sensing image;
D O I
10.1109/JSTARS.2023.3329235
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Detecting and recognizing objects are crucial steps in interpreting remote sensing images. At present, deep learning methods are predominantly employed for detecting objects in remote sensing images, necessitating a significant number of floating-point computations. However, low computing power and small storage in computing devices are hard to afford the large model parameter quantity and high computing complexity. To address these constraints, this article presents a lightweight detection model called CSPPartial-YOLO. This model introduces the partial hybrid dilated convolution (PHDC) Block module that combines hybrid dilated convolutions and partial convolutions to increase the receptive field at a low computational cost. By using the PHDC Block within the model design framework of cross-stage partial connection, we construct CSPPartialStage that reduces computational burden without compromising accuracy. Coordinate attention module is also employed in CSPPartialStage to aggregate position information and improve the detection of small objects with complex distributions in remote sensing images. A backbone and neck are developed with CSPPartialStage, and the rotation head of the PPYOLOE-R model adapts to objects of multiple orientations in remote sensing images. Empirical experiments using the dataset for object deTection in aerial images (DOTA) dataset and a large-scale small object detection dAtaset (SODA-A) dataset indicate that our method is faster and resource efficient than the baseline model (PPYOLOE-R), while achieving higher accuracy. Furthermore, comparisons with current state-of-the-art YOLO series detectors show our proposed model's competitiveness in terms of speed and accuracy. Moreover, compared to mainstream lightweight networks, our model exhibits better hardware adaptability, with lower inference latency and higher detection accuracy.
引用
收藏
页码:388 / 399
页数:12
相关论文
共 50 条
  • [11] SGM-YOLO: YOLO-Based Defect Detection Model for Wood Lumber
    Liu, Liping
    Zhang, Qiyu
    Peng, Wenqi
    Wang, Ruiqi
    Yin, Jingtao
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2024, 38 (15)
  • [12] YOLO-based microglia activation state detection
    Liu, Jichi
    Li, Wei
    Lyu, Houkun
    Qi, Feng
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (16) : 24413 - 24434
  • [13] YOLO-Anti: YOLO-based counterattack model for unseen congested object detection
    Wang, Kun
    Liu, Maozhen
    PATTERN RECOGNITION, 2022, 131
  • [14] BA-YOLO for Object Detection in Satellite Remote Sensing Images
    Wang, Kuilin
    Liu, Zhenze
    APPLIED SCIENCES-BASEL, 2023, 13 (24):
  • [15] A Yolo-based Violence Detection Method in IoT Surveillance Systems
    Gao, Hui
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (08) : 143 - 149
  • [16] Transfer Learning for Object Detection in Remote Sensing Images with YOLO
    Devi, A.
    Reddy, K. Venkateswara
    Bangare, Sunil L.
    Pande, Deepti S.
    Balaji, S. R.
    Badhoutiya, Arti
    Shrivastava, Anurag
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 980 - 989
  • [17] PI-YOLO: dynamic sparse attention and lightweight convolutional based YOLO for vessel detection in pathological images
    Li, Cong
    Che, Shuanlong
    Gong, Haotian
    Ding, Youde
    Luo, Yizhou
    Xi, Jianing
    Qi, Ling
    Zhang, Guiying
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [18] Lightweight Object Detection Networks for UAV Aerial Images Based on YOLO
    Li, Yanshan
    Wang, Jiarong
    Zhang, Kunhua
    Yi, Jiawei
    Wei, Miaomiao
    Zheng, Lirong
    Xie, Weixin
    CHINESE JOURNAL OF ELECTRONICS, 2024, 33 (04) : 997 - 1009
  • [19] YOLO-OHFD: A YOLO-Based Oriented Hair Follicle Detection Method for Robotic Hair Transplantation
    Wang, Hui
    Liu, Xin
    APPLIED SCIENCES-BASEL, 2025, 15 (06):
  • [20] RA-YOLO: the detection of small vehicles in remote sensing images based on network reconstruction
    Zou, Zheng
    Zhang, Tianhui
    Mao, Bonian
    REMOTE SENSING LETTERS, 2025, 16 (02) : 125 - 135