Learning based compressive snapshot spectral light field imaging with RGB sensors

被引:1
作者
He, Tianyu [1 ]
Ren, Wenyi [2 ]
Feng, Yang [2 ]
Yu, Ruoning [1 ]
Wu, Dan [3 ]
Zhang, Rui [2 ]
Cai, Yanan [2 ]
Xie, Yingge [2 ]
Wang, Jian [4 ]
机构
[1] Northwest Agr & Forestry Univ, Coll Informat Engn, Yangling 712100, Peoples R China
[2] Northwest Agr & Forestry Univ, Coll Sci, Yangling 712100, Peoples R China
[3] Northwest Agr & Forestry Univ, Coll Mech & Elect Engn, Yangling 712100, Peoples R China
[4] Xian Inst Appl Opt, Lab Fiber Technol, Xian 710065, Peoples R China
基金
中国国家自然科学基金;
关键词
Cameras; -; Costs;
D O I
10.1364/OE.502690
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The application of multidimensional optical sensing technologies, such as the spectral light field (SLF) imager, has become increasingly common in recent years. The SLF sensors provide information in the form of one-dimensional spectral data, two-dimensional spatial data, and two-dimensional angular measurements. Spatial-spectral and angular data are essential in a variety of fields, from computer vision to microscopy. Beam-splitters or expensive camera arrays are required for the usage of SLF sensors. The paper describes a low-cost RGB light field camera-based compressed snapshot SLF imaging method. Inspired by the compressive sensing paradigm, the four dimensional SLF can be reconstructed from a measurement of an RGB light field camera via a network which is proposed by utilizing a U-shaped neural network with multi-head self-attention and unparameterized Fourier transform modules. This method is capable of gathering images with a spectral resolution of 10 nm, angular resolution of 9 x 9, and spatial resolution of 622 x 432 within the spectral range of 400 to 700 nm. It provides us an alternative approach to implement the low cost SLF imaging.(c) 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:33387 / 33400
页数:14
相关论文
共 41 条
[1]   Adversarial Networks for Spatial Context-Aware Spectral Image Reconstruction from RGB [J].
Alvarez-Gila, Aitor ;
van de Weijer, Joost ;
Garrote, Estibaliz .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, :480-490
[2]   NTIRE 2022 Spectral Recovery Challenge and Data Set [J].
Arad, Boaz ;
Timofte, Radu ;
Yahel, Rony ;
Morag, Nimrod ;
Bernat, Amir ;
Cai, Yuanhao ;
Lin, Jing ;
Lin, Zudi ;
Wang, Haoqian ;
Zhang, Yulun ;
Pfister, Hanspeter ;
Van Gool, Luc ;
Liu, Shuai ;
Li, Yongqiang ;
Feng, Chaoyu ;
Lei, Lei ;
Li, Jiaojiao ;
Du, Songcheng ;
Wu, Chaoxiong ;
Leng, Yihong ;
Song, Rui ;
Zhang, Mingwei ;
Song, Chongxing ;
Zhao, Shuyi ;
Lang, Zhiqiang ;
Wei, Wei ;
Zhang, Lei ;
Dian, Renwei ;
Shan, Tianci ;
Guo, Anjing ;
Feng, Chengguo ;
Liu, Jinyang ;
Agarla, Mirko ;
Bianco, Simone ;
Buzzelli, Marco ;
Celona, Luigi ;
Schettini, Raimondo ;
He, Jiang ;
Xiao, Yi ;
Xiao, Jiajun ;
Yuan, Qiangqiang ;
Li, Jie ;
Zhang, Liangpei ;
Kwon, Taesung ;
Ryu, Dohoon ;
Bae, Hyokyoung ;
Yang, Hao-Hsiang ;
Chang, Hua-En ;
Huang, Zhi-Kai ;
Chen, Wei-Ting .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, :862-880
[3]   Sparse Recovery of Hyperspectral Signal from Natural RGB Images [J].
Arad, Boaz ;
Ben-Shahar, Ohad .
COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 :19-34
[4]   Compressive sensing [J].
Baraniuk, Richard G. .
IEEE SIGNAL PROCESSING MAGAZINE, 2007, 24 (04) :118-+
[5]   Signal Processing for Time-of-Flight Imaging Sensors An introduction to inverse problems in computational 3-D imaging [J].
Bhandari, Ayush ;
Raskar, Ramesh .
IEEE SIGNAL PROCESSING MAGAZINE, 2016, 33 (05) :45-58
[6]   A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration [J].
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (12) :2992-3004
[7]   MST plus plus : Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction [J].
Cai, Yuanhao ;
Lin, Jing ;
Lin, Zudi ;
Wang, Haoqian ;
Zhang, Yulun ;
Pfister, Hanspeter ;
Timofte, Radu ;
Van Gool, Luc .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, :744-754
[8]   Light Field Denoising via Anisotropic Parallax Analysis in a CNN Framework [J].
Chen, Jie ;
Hou, Junhui ;
Chau, Lap-Pui .
IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (09) :1403-1407
[9]   Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems [J].
Figueiredo, Mario A. T. ;
Nowak, Robert D. ;
Wright, Stephen J. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2007, 1 (04) :586-597
[10]   The design and implementation of FFTW3 [J].
Frigo, M ;
Johnson, SG .
PROCEEDINGS OF THE IEEE, 2005, 93 (02) :216-231