Bio-inspired machine learning: programmed death and replication

被引:0
|
作者
Grabovsky, Andrey [1 ,2 ]
Vanchurin, Vitaly [3 ,4 ]
机构
[1] Budker Inst Nucl Phys, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Natl Ctr Biotechnol Informat, NIH, Bethesda, MD 20894 USA
[4] Duluth Inst Adv Study, Duluth, MN 55804 USA
来源
NEURAL COMPUTING & APPLICATIONS | 2023年 / 35卷 / 27期
关键词
Machine learning; Neural networks; Bio-inspired algorithms; Neuron correlations; Pruning algorithms; Constructive algorithms; Classification; NEURAL-NETWORKS; PRUNING ALGORITHM; CLASSIFICATION;
D O I
10.1007/s00521-023-08806-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We analyze algorithmic and computational aspects of biological phenomena, such as replication and programmed death, in the context of machine learning. We use two different measures of neuron efficiency to develop machine learning algorithms for adding neurons to the system (i.e., replication algorithm) and removing neurons from the system (i.e., programmed death algorithm). We argue that the programmed death algorithm can be used for compression of neural networks and the replication algorithm can be used for improving performance of the already trained neural networks. We also show that a combined algorithm of programmed death and replication can improve the learning efficiency of arbitrary machine learning systems. The computational advantages of the bio-inspired algorithms are demonstrated by training feedforward neural networks on the MNIST dataset of handwritten images.
引用
收藏
页码:20273 / 20298
页数:26
相关论文
共 50 条
  • [31] A simplified machine learning empirical model for biomimetic crack healing of bio-inspired concrete
    Amjad, Hassan
    Khattak, Muhammad Muzzamil Hussain
    Khushnood, Rao Arsalan
    MATERIALS TODAY COMMUNICATIONS, 2023, 37
  • [32] Bio-inspired Machine Learning for Distributed Confidential Multi-Portfolio Selection Problem
    Khan, Ameer Tamoor
    Cao, Xinwei
    Liao, Bolin
    Francis, Adam
    BIOMIMETICS, 2022, 7 (03)
  • [33] Bio-inspired Bio-inspired computer vision based on neural networks
    Antón-Rodríguez M.
    González-Ortega D.
    Díaz-Pernas F.J.
    Martínez-Zarzuela M.
    de la Torre-Díez I.
    Boto-Giralda D.
    Díez-Higuera J.F.
    Pattern Recognition and Image Analysis, 2011, 21 (2) : 108 - 112
  • [34] Bio-inspired microrobots
    Qiu, Famin
    Zhang, Li
    Tottori, Soichiro
    Marquardt, Klaus
    Krawczyk, Krzysztof
    Franco-Obregon, Alfredo
    Nelson, Bradley J.
    MATERIALS TODAY, 2012, 15 (10) : 463 - 463
  • [35] Bayesian Bio-inspired Model for Learning Interactive Trajectories
    Dore, Alessio
    Regazzoni, Carlo S.
    AVSS: 2009 6TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE, 2009, : 207 - 212
  • [36] Thematic issue on “bio-inspired learning for data analysis”
    Yaochu Jin
    Jinliang Ding
    Yongsheng Ding
    Memetic Computing, 2017, 9 : 1 - 2
  • [37] Thematic issue on "bio-inspired learning for data analysis"
    Jin, Yaochu
    Ding, Jinliang
    Ding, Yongsheng
    MEMETIC COMPUTING, 2017, 9 (01) : 1 - 2
  • [38] Bio-inspired optics
    Scribner, DA
    Buckley, LJ
    Satyshur, M
    Sands, R
    Zuccarello, G
    INFRARED TECHNOLOLGY AND APPLICATIONS XXIX, 2003, 5074 : 312 - 317
  • [39] Bio-inspired adhesion
    Ghatak, Animangsu
    JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 2014, 28 (3-4) : 225 - 225
  • [40] Bio-Inspired Networking
    Dressler, Falko
    Suda, Tatsuya
    Carreras, Iacopo
    Murata, Masayuki
    Crowcroft, Jon
    Karlsson, Gunnar
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2010, 28 (04) : 521 - 523