Bio-inspired machine learning: programmed death and replication

被引:0
|
作者
Grabovsky, Andrey [1 ,2 ]
Vanchurin, Vitaly [3 ,4 ]
机构
[1] Budker Inst Nucl Phys, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Natl Ctr Biotechnol Informat, NIH, Bethesda, MD 20894 USA
[4] Duluth Inst Adv Study, Duluth, MN 55804 USA
关键词
Machine learning; Neural networks; Bio-inspired algorithms; Neuron correlations; Pruning algorithms; Constructive algorithms; Classification; NEURAL-NETWORKS; PRUNING ALGORITHM; CLASSIFICATION;
D O I
10.1007/s00521-023-08806-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We analyze algorithmic and computational aspects of biological phenomena, such as replication and programmed death, in the context of machine learning. We use two different measures of neuron efficiency to develop machine learning algorithms for adding neurons to the system (i.e., replication algorithm) and removing neurons from the system (i.e., programmed death algorithm). We argue that the programmed death algorithm can be used for compression of neural networks and the replication algorithm can be used for improving performance of the already trained neural networks. We also show that a combined algorithm of programmed death and replication can improve the learning efficiency of arbitrary machine learning systems. The computational advantages of the bio-inspired algorithms are demonstrated by training feedforward neural networks on the MNIST dataset of handwritten images.
引用
收藏
页码:20273 / 20298
页数:26
相关论文
共 50 条
  • [1] Bio-inspired machine learning: programmed death and replication
    Andrey Grabovsky
    Vitaly Vanchurin
    Neural Computing and Applications, 2023, 35 : 20273 - 20298
  • [2] Application of machine learning to object manipulation with bio-inspired microstructures
    Samri, Manar
    Thiemecke, Jonathan
    Hensel, Rene
    Arzt, Eduard
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 27 : 1406 - 1416
  • [3] Bio-inspired Machine Learning in Microarray Gene Selection and Cancer Classification
    Aljandali, Sultan H.
    El-Telbany, Mohammed E.
    2009 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT 2009), 2009, : 339 - +
  • [4] Detecting Spam Email With Machine Learning Optimized With Bio-Inspired Metaheuristic Algorithms
    Gibson, Simran
    Issac, Biju
    Zhang, Li
    Jacob, Seibu Mary
    IEEE ACCESS, 2020, 8 : 187914 - 187932
  • [5] Bio-Inspired Optimization Algorithm in Machine Learning and Practical Applications
    Shallu Juneja
    Harsh Taneja
    Ashish Patel
    Yogesh Jadhav
    Anita Saroj
    SN Computer Science, 5 (8)
  • [6] Cooperation of Bio-inspired and Evolutionary Algorithms for Neural Network Design
    Akhmedova, Shakhnaz A.
    Stanovov, Vladimir V.
    Semenkin, Eugene S.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2018, 11 (02): : 148 - 158
  • [7] BIO-INSPIRED OPTIMIZATION OF HYBRID INTELLIGENT SYSTEMS
    Melin, Patricia
    PROCEEDINGS OF THE7TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL. 1, 2020, : 17 - 19
  • [8] Bio-inspired learning approach for electronic nose
    Sanad Al-Maskari
    Zhuoming Xu
    Wenping Guo
    Xiaoming Zhao
    Xue Li
    Computing, 2018, 100 : 387 - 402
  • [9] Bio-inspired learning approach for electronic nose
    Al-Maskari, Sanad
    Xu, Zhuoming
    Guo, Wenping
    Zhao, Xiaoming
    Li, Xue
    COMPUTING, 2018, 100 (04) : 387 - 402
  • [10] The Role of Bio-Inspired Modularity in General Learning
    StClair, Rachel A.
    Hahn, William Edward
    Barenholtz, Elan
    ARTIFICIAL GENERAL INTELLIGENCE, AGI 2021, 2022, 13154 : 261 - 268