MFNet: A Novel Multilevel Feature Fusion Network With Multibranch Structure for Surface Defect Detection

被引:4
作者
Zhu, Jiangping [1 ]
He, Guohuan [1 ]
Zhou, Pei [1 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Atrous spatial pyramid pooling (ASPP); global attention; multibranch structure; semantic segmentation; surface defect detection;
D O I
10.1109/TIM.2023.3284050
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Surface defect detection is an essential topic in the industrial inspection field. Many methods based on machine vision (MV) have been applied. However, it is still a challenging task due to the complexity of defects, including low-contrast, small objects, and irregular geometric boundaries. To deal with these problems, this article proposes a novel multilevel feature fusion network (MFNet) with a multibranch structure for surface defect detection. First, we extract low- and high-level features via the encoder based on ResNet34. Second, an improved atrous spatial pyramid pooling (ASPP) module is adapted to expand the receptive field (RF) of low-level features. Then, the decoder adopts a multibranch structure to fuse multilevel features for details, and a global attention module is introduced to strengthen the effectiveness of feature fusion and detection accuracy. Finally, the optimal result from multiple outputs can be obtained by multibranch. Extensive experiments indicate that our method enjoys a better defect detection performance compared to four excellent semantic segmentation networks. Especially the accuracy metric can be improved to 98.54%, 99.82%, and 99.79% on three representative defect datasets: CrackForest, Kolektor, and RSDDs.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Crack Detection Algorithm Based on Improved Multibranch Feature Shared Structure Network
    Li Gang
    Chen Yongqiang
    He Tingquan
    Dai Yu
    Lan Dongchao
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (12)
  • [2] IFIFusion: A independent feature information fusion model for surface defect detection
    Zhou, Xin
    Zhang, Yongchao
    Liu, Zheng
    Jiang, Zeyu
    Ren, Zhaohui
    Mi, Tianchuan
    Zhou, Shihua
    INFORMATION FUSION, 2025, 120
  • [3] MSFF: A Multi-Scale Feature Fusion Network for Surface Defect Detection of Aluminum Profiles
    Sun, Lianshan
    Wei, Jingxue
    Du, Hanchao
    Zhang, Yongbin
    He, Lifeng
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (09) : 1652 - 1655
  • [4] A dual-structure attention-based multi-level feature fusion network for automatic surface defect detection
    Xiaoyu Zhang
    Jinping Zhang
    Jiusheng Chen
    Runxia Guo
    Jun Wu
    The Visual Computer, 2024, 40 : 2713 - 2732
  • [5] A dual-structure attention-based multi-level feature fusion network for automatic surface defect detection
    Zhang, Xiaoyu
    Zhang, Jinping
    Chen, Jiusheng
    Guo, Runxia
    Wu, Jun
    VISUAL COMPUTER, 2024, 40 (04) : 2713 - 2732
  • [6] SFMRNet: Specific Feature Fusion and Multibranch Feature Refinement Network for Land Use Classification
    Chen, Guojun
    Chen, Haozhen
    Cui, Tao
    Li, Huihui
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 16206 - 16221
  • [7] TAFFNet: Two-Stage Attention-Based Feature Fusion Network for Surface Defect Detection
    Cao, Jingang
    Yang, Guotian
    Yang, Xiyun
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2022, 94 (12): : 1531 - 1544
  • [8] Surface defect detection of sawn timbers based on efficient multilevel feature integration
    Zhu, Yuhang
    Xu, Zhezhuang
    Lin, Ye
    Chen, Dan
    Zheng, Kunxin
    Yuan, Yazhou
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (04)
  • [9] TAFFNet: Two-Stage Attention-Based Feature Fusion Network for Surface Defect Detection
    Jingang Cao
    Guotian Yang
    Xiyun Yang
    Journal of Signal Processing Systems, 2022, 94 : 1531 - 1544
  • [10] A Surface Defect Detection Method Based on Multi-Feature Fusion
    Wu, Xiaojun
    Xiong, Huijiang
    Yu, Zhiyang
    Wen, Peizhi
    NINTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2017), 2017, 10420