On a Certain Functional Equation and Its Application to the Schwarz Problem

被引:1
作者
Nikolaev, Vladimir [1 ]
Vasilyev, Vladimir [2 ]
机构
[1] Yaroslav Wise Novgorod State Univ, Bolshaya St Peterburgskaya Ul 41, Velikiy Novgorod 173003, Russia
[2] Belgorod State Natl Res Univ, Ctr Appl Math, Pobedy St 85, Belgorod 308015, Russia
关键词
J-analytic functions; & lambda; -holomorphic functions; matrix eigenvalue; ellipse; functional equation;
D O I
10.3390/math11122789
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Schwarz problem for J-analytic functions in an ellipse is considered. In this case, the matrix J is assumed to be two-dimensional with different eigenvalues located above the real axis. The Schwarz problem is reduced to an equivalent boundary value problem for the scalar functional equation depending on the real parameter l. This parameter is determined by the Jordan basis of the matrix J. An analysis of the functional equation was performed. It is shown that for l & ISIN; [0, 1], the solution of the Schwarz problem with matrix J exists uniquely in the Holder classes in an arbitrary ellipse.
引用
收藏
页数:10
相关论文
共 17 条
[1]  
Bitsadze A. V., 2012, Boundary Value Problems for Second Order Elliptic Equations
[2]  
Boyarskii B.V., 1966, Ann. Pol. Math, V17, P281
[4]   ANALYTIC, GENERALIZED, HYPERANALYTIC FUNCTION THEORY AND AN APPLICATION TO ELASTICITY [J].
GILBERT, RP ;
WENDLAND, WL .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1975, 73 :317-331
[5]  
Hile G.N., 1978, COMMUN PUR APPL MATH, V3, P949
[6]  
Horvath J., 1961, Contrib. Differential Equations, V1, P39
[7]   Solving Two-Sided Fractional Super-Diffusive Partial Differential Equations with Variable Coefficients in a Class of New Reproducing Kernel Spaces [J].
Li, Zhiyuan ;
Chen, Qintong ;
Wang, Yulan ;
Li, Xiaoyu .
FRACTAL AND FRACTIONAL, 2022, 6 (09)
[8]   On the solution of the Schwarz problem for J-analytic functions in a domain bounded by a Lyapunov contour [J].
Nikolaev, V. G. ;
Soldatov, A. P. .
DIFFERENTIAL EQUATIONS, 2015, 51 (07) :962-966
[9]  
Nikolaev V.G., 2019, J. Math. Sci, V239, P363, DOI [10.1007/s10958-019-04311-z, DOI 10.1007/S10958-019-04311-Z]
[10]  
Paskali D., 1965, REV ROUMEINE MATH PU, V10, P779