A Compact Difference Scheme for Time-Space Fractional Nonlinear Diffusion-Wave Equations with Initial Singularity

被引:0
作者
Elmahdi, Emadidin Gahalla Mohmed [1 ,2 ]
Arshad, Sadia [3 ]
Huang, Jianfei [1 ]
机构
[1] Yangzhou Univ, Coll Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
[2] Univ Khartoum, Fac Educ, POB 321, Khartoum, Sudan
[3] COMSATS Univ Islamabad, Lahore Campus, Islamabad, Pakistan
基金
中国国家自然科学基金;
关键词
Fractional nonlinear diffusion-wave equations; finite difference method; fourth-order compact operator; stability; convergence; FINITE-ELEMENT-METHOD; APPROXIMATION; MESH;
D O I
10.4208/aamm.OA-2022-0049xxx2023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a linearized compact difference scheme for onedimensional time-space fractional nonlinear diffusion-wave equations with initial boundary value conditions. The initial singularity of the solution is considered, which often generates a singular source and increases the difficulty of numerically solving the equation. The Crank-Nicolson technique, combined with the midpoint formula and the second-order convolution quadrature formula, is used for the time discretization. To increase the spatial accuracy, a fourth-order compact difference approximation, which is constructed by two compact difference operators, is adopted for spatial discretization. Then, the unconditional stability and convergence of the proposed scheme are strictly established with superlinear convergence accuracy in time and fourth-order accuracy in space. Finally, numerical experiments are given to support our theoretical results.
引用
收藏
页数:19
相关论文
共 34 条
[11]   Finite element method for space-time fractional diffusion equation [J].
Feng, L. B. ;
Zhuang, P. ;
Liu, F. ;
Turner, I. ;
Gu, Y. T. .
NUMERICAL ALGORITHMS, 2016, 72 (03) :749-767
[12]   Fast Iterative Method with a Second-Order Implicit Difference Scheme for Time-Space Fractional Convection-Diffusion Equation [J].
Gu, Xian-Ming ;
Huang, Ting-Zhu ;
Ji, Cui-Cui ;
Carpentieri, Bruno ;
Alikhanov, Anatoly A. .
JOURNAL OF SCIENTIFIC COMPUTING, 2017, 72 (03) :957-985
[13]   A superlinear convergence scheme for the multi-term and distribution-order fractional wave equation with initial singularity [J].
Huang, Jianfei ;
Zhang, Jingna ;
Arshad, Sadia ;
Tang, Yifa .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (04) :2833-2848
[14]   Convolution Quadrature Methods for Time-Space Fractional Nonlinear Diffusion-Wave Equations [J].
Huang, Jianfei ;
Arshad, Sadia ;
Jiao, Yandong ;
Tang, Yifa .
EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2019, 9 (03) :538-557
[15]  
LeVeque RJ, 2007, OTHER TITL APPL MATH, V98, P1, DOI 10.1137/1.9780898717839
[16]  
LI C., 2015, NUMERICAL METHODS FR
[17]   A Separable Preconditioner for Time-Space Fractional Caputo-Riesz Diffusion Equations [J].
Lin, Xuelei ;
Ng, Michael K. ;
Sun, Haiwei .
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2018, 11 (04) :827-853
[18]   Finite difference method for time-space-fractional Schrodinger equation [J].
Liu, Qun ;
Zeng, Fanhai ;
Li, Changpin .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (07) :1439-1451
[19]   DISCRETIZED FRACTIONAL CALCULUS [J].
LUBICH, C .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (03) :704-719
[20]   CONVOLUTION QUADRATURE AND DISCRETIZED OPERATIONAL CALCULUS .1. [J].
LUBICH, C .
NUMERISCHE MATHEMATIK, 1988, 52 (02) :129-145