Ordered-vacancy defect chalcopyrite ZnIn2Te4: A potential thermoelectric material with low lattice thermal conductivity

被引:2
作者
Govindaraj, Prakash [1 ]
Murugan, Kowsalya [1 ]
Veluswamy, Pandiyarasan [2 ]
Venugopal, Kathirvel [1 ]
机构
[1] SRM Inst Sci & Technol, Dept Phys & Nanotechnol, Chennai 603203, India
[2] Indian Inst Informat Technol Design & Mfg IIITDM, Dept Elect & Commun Engn, Chennai 600127, India
关键词
Defect chalcopyrite; Gruneisen parameter; Group velocity; Figure of merit; NONLINEAR-OPTICAL PROPERTIES; AB-INITIO; PERFORMANCE; EFFICIENCY; TRANSPORT;
D O I
10.1016/j.jssc.2023.124076
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
An effective route towards commercializing thermoelectric devices is to explore materials with high conversion efficiency. This study investigates the thermoelectric properties of ZnIn2Te4 with the combination of first -principles calculations, Boltzmann transport theory and the modified Debye Callaway model. This vacancy -ordered defect chalcopyrite shows a direct band gap of 1.37 eV, obtained by mBJ functional with spin orbit coupling. The positive phonon dispersion curves ensure the thermodynamical stability of the material. Moreover, strong acoustic-optical coupling, Gruneisen parameter, and moderate phonon group velocity yielded the low lattice thermal conductivity (kL) of 1.46 W m-1 K-1 at 900 K. Owing to this low kL, the optimum thermoelectric figure of merit of 0.90 and 0.98 is obtained for p and n-type ZnIn2Te4. These findings will open the way for the experimentalists to attempt for its experimental realization.
引用
收藏
页数:10
相关论文
共 66 条
  • [1] [Anonymous], 1985, LANDOLT BO RNSTEIN N
  • [2] FP-LAPW investigation of structural, electronic, linear and nonlinear optical properties of ZnIn2Te4 defect-chalcopyrite
    Ayeb, Y.
    Ouahrani, T.
    Khenata, R.
    Reshak, Ali H.
    Rached, D.
    Bouhemadou, A.
    Arrar, R.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2010, 50 (02) : 651 - 655
  • [3] Lattice dynamics in Bi2Te3 and Sb2Te3: Te and Sb density of phonon states
    Bessas, D.
    Sergueev, I.
    Wille, H. -C.
    Persson, J.
    Ebling, D.
    Hermann, R. P.
    [J]. PHYSICAL REVIEW B, 2012, 86 (22)
  • [4] WIEN2k: An APW+lo program for calculating the properties of solids
    Blaha, Peter
    Schwarz, Karlheinz
    Tran, Fabien
    Laskowski, Robert
    Madsen, Georg K. H.
    Marks, Laurence D.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (07)
  • [5] Brennan K.F., 1999, PHYS SEMICONDUCTORS
  • [6] Realizing a 14% single-leg thermoelectric efficiency in GeTe alloys
    Bu, Zhonglin
    Zhang, Xinyue
    Shan, Bing
    Tang, Jing
    Liu, Hongxia
    Chen, Zhiwei
    Lin, Siqi
    Li, Wen
    Pei, Yanzhong
    [J]. SCIENCE ADVANCES, 2021, 7 (19)
  • [7] Computational prediction of high thermoelectric performance in p-type CuGaTe2 with a first-principles study
    Chen, Chaoran
    Zhang, Peng
    Yue, Luo
    Li, Juan
    Fang, Teng
    Zheng, Shuqi
    Lu, Guiwu
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2019, 158 : 369 - 375
  • [8] Promising defect thermoelectric semiconductors Cu1-xGaSbxTe2 (x = 0-0.1) with the chalcopyrite structure
    Cui, Jiaolin
    Li, Yapeng
    Du, Zhengliang
    Meng, Qingsen
    Zhou, Hong
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (03) : 677 - 683
  • [9] Nucleation of nanosize particles following the spinodal decomposition in the pseudo-ternary Ge0.6Sn0.1Pb0.3Te compound
    Dado, Boaz
    Gelbstein, Yaniv
    Dariel, Moshe P.
    [J]. SCRIPTA MATERIALIA, 2010, 62 (02) : 89 - 92
  • [10] Ultralow Thermal Conductivity and High Thermoelectric Performance in AgCuTe1-xSex through Isoelectronic Substitution
    Deng, Shuping
    Jiang, Xianyan
    Chen, Lili
    Qi, Ning
    Tang, Xinfeng
    Chen, Zhiquan
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (01) : 868 - 877