Latent Growth Models for Count Outcomes: Specification, Evaluation, and Interpretation

被引:4
作者
Seddig, Daniel [1 ,2 ,3 ]
机构
[1] Univ Cologne, Cologne, Germany
[2] Univ Munster, Munster, France
[3] Univ Cologne, Albertus Magnus Pl, D-50923 Cologne, Germany
关键词
Count data; latent growth models; Mplus; Poisson and negative binomial; structural equation modelling; POISSON REGRESSION; DEVELOPMENTAL TRAJECTORIES; CRIMINAL CAREERS; SUBSTANCE USE; LIKELIHOOD; MULTILEVEL; SYMPTOMS; PERFORMANCE; SELECTION; PACKAGE;
D O I
10.1080/10705511.2023.2175684
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The latent growth model (LGM) is a popular tool in the social and behavioral sciences to study development processes of continuous and discrete outcome variables. A special case is frequency measurements of behaviors or events, such as doctor visits per month or crimes committed per year. Probability distributions for such outcomes include the Poisson or negative binomial distribution and their zero-inflated extensions to account for excess zero counts. This article demonstrates how to specify, evaluate, and interpret LGMs for count outcomes using the Mplus program in the structural equation modeling framework. The foundations of LGMs for count outcomes are discussed and illustrated using empirical count data on self-reported criminal offenses of adolescents (N = 1,664; age 15-18). Annotated syntax and output are presented for all model variants. A negative binomial LGM is shown to best fit the crime growth process, outperforming Poisson, zero-inflated, and hurdle LGMs.
引用
收藏
页码:182 / 198
页数:17
相关论文
共 94 条
  • [1] FACTOR-ANALYSIS AND AIC
    AKAIKE, H
    [J]. PSYCHOMETRIKA, 1987, 52 (03) : 317 - 332
  • [2] Asparouhov T., 2021, PSYCHOLOGY, V3, P542, DOI [https://doi.org/10.3390/psych3030035, DOI 10.3390/PSYCH3030035]
  • [3] Asparouhov T., 2021, Technical Report (Version 5)
  • [4] Path analysis in Mplus: A tutorial using a conceptual model of psychological and behavioral antecedents of bulimic symptoms in young adults
    Barbeau, Kheana
    Boileau, Kayla
    Sarr, Fatima
    Smith, Kevin
    [J]. QUANTITATIVE METHODS FOR PSYCHOLOGY, 2019, 15 (01): : 38 - 53
  • [5] Developmental trajectories of male physical violence and theft -: Relations to neurocognitive performance
    Barker, Edward D.
    Seguin, Jean R.
    White, Helene Raskin
    Bates, Marsha E.
    Lacourse, Eric
    Carbonneau, Rene
    Tremblay, Richard E.
    [J]. ARCHIVES OF GENERAL PSYCHIATRY, 2007, 64 (05) : 592 - 599
  • [6] The Case for Objective Bayesian Analysis
    Berger, James
    [J]. BAYESIAN ANALYSIS, 2006, 1 (03): : 385 - 402
  • [7] Overdispersion and poisson regression
    Berk, Richard
    MacDonald, John M.
    [J]. JOURNAL OF QUANTITATIVE CRIMINOLOGY, 2008, 24 (03) : 269 - 284
  • [8] Explaining the development of adolescent violent delinquency
    Boers, Klaus
    Reinecke, Jost
    Seddig, Daniel
    Mariotti, Luca
    [J]. EUROPEAN JOURNAL OF CRIMINOLOGY, 2010, 7 (06) : 499 - 520
  • [9] Bollen KA, 2006, WILEY SER PROBAB ST, P1
  • [10] Autoregressive latent trajectory (ALT) models a synthesis of two traditions
    Bollen, KA
    Curran, PJ
    [J]. SOCIOLOGICAL METHODS & RESEARCH, 2004, 32 (03) : 336 - 383