Emergent statistical laws in single-cell transcriptomic data

被引:7
作者
Lazzardi, Silvia [1 ,2 ]
Valle, Filippo [1 ,2 ]
Mazzolini, Andrea [3 ,4 ]
Scialdone, Antonio [5 ,6 ,7 ]
Caselle, Michele [1 ,2 ]
Osella, Matteo [1 ,2 ]
机构
[1] Univ Turin, Dept Phys, Via P Giuria 1, I-10125 Turin, Italy
[2] INFN, Via P Giuria 1, I-10125 Turin, Italy
[3] Sorbonne Univ, PSL Univ, CNRS, Lab Phys,Ecole Normale Super, F-75005 Paris, France
[4] Univ Paris, F-75005 Paris, France
[5] Helmholtz Zentrum Munchen, Inst Epigenet & Stem Cells, Feodor Lynen Str 21, D-81377 Munich, Germany
[6] Helmholtz Zentrum Munchen, Inst Funct Epigenet, Ingolstadter Landstr 1, D-85764 Neuherberg, Germany
[7] Helmholtz Zentrum Munchen, Inst Computat Biol, Ingolstadter Landstr 1, D-85764 Neuherberg, Germany
关键词
GENE-EXPRESSION; RNA-SEQ; DISTRIBUTIONS; FEATURES; REVEALS; ORIGINS; SYSTEMS; GROWTH;
D O I
10.1103/PhysRevE.107.044403
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Large-scale data on single-cell gene expression have the potential to unravel the specific transcriptional programs of different cell types. The structure of these expression datasets suggests a similarity with several other complex systems that can be analogously described through the statistics of their basic building blocks. Transcriptomes of single cells are collections of messenger RNA abundances transcribed from a common set of genes just as books are different collections of words from a shared vocabulary, genomes of different species are specific compositions of genes belonging to evolutionary families, and ecological niches can be described by their species abundances. Following this analogy, we identify several emergent statistical laws in single-cell transcriptomic data closely similar to regularities found in linguistics, ecology, or genomics. A simple mathematical framework can be used to analyze the relations between different laws and the possible mechanisms behind their ubiquity. Importantly, treatable statistical models can be useful tools in transcriptomics to disentangle the actual biological variability from general statistical effects present in most component systems and from the consequences of the sampling process inherent to the experimental technique.
引用
收藏
页数:17
相关论文
共 50 条
[21]   Opportunities and tradeoffs in single-cell transcriptomic technologies [J].
Conte, Matilde I. ;
Fuentes-Trillo, Azahara ;
Conde, Cecilia Dominguez .
TRENDS IN GENETICS, 2024, 40 (01) :83-93
[22]   Single-Cell Transcriptomic Analysis of Tumor Heterogeneity [J].
Levitin, Hanna Mendes ;
Yuan, Jinzhou ;
Sims, Peter A. .
TRENDS IN CANCER, 2018, 4 (04) :264-268
[23]   InterCellar enables interactive analysis and exploration of cell-cell communication in single-cell transcriptomic data [J].
Interlandi, Marta ;
Kerl, Kornelius ;
Dugas, Martin .
COMMUNICATIONS BIOLOGY, 2022, 5 (01)
[24]   Single-cell transcriptomic analysis of mIHC images via antigen mapping [J].
Govek, Kiya W. ;
Troisi, Emma C. ;
Miao, Zhen ;
Aubin, Rachael G. ;
Woodhouse, Steven ;
Camara, Pablo G. .
SCIENCE ADVANCES, 2021, 7 (10)
[25]   Single-cell transcriptomic analysis of vascular endothelial cells in zebrafish embryos [J].
Gurung, Suman ;
Restrepo, Nicole K. ;
Chestnut, Brendan ;
Klimkaite, Laurita ;
Sumanas, Saulius .
SCIENTIFIC REPORTS, 2022, 12 (01)
[26]   A Single-Cell Transcriptomic Analysis Reveals Precise Pathways and Regulatory Mechanisms Underlying Hepatoblast Differentiation [J].
Yang, Li ;
Wang, Wei-Hua ;
Qiu, Wei-Lin ;
Guo, Zhen ;
Bi, Erfei ;
Xu, Cheng-Ran .
HEPATOLOGY, 2017, 66 (05) :1387-1401
[27]   Artificial intelligence approaches for tumor phenotype stratification from single-cell transcriptomic data [J].
Bhattacharya, Namrata ;
Rockstroh, Anja ;
Deshpande, Sanket Suhas ;
Thomas, Sam Koshy ;
Yadav, Anunay ;
Goswami, Chitrita ;
Chawla, Smriti ;
Solomon, Pierre ;
Fourgeux, Cynthia ;
Ahuja, Gaurav ;
Hollier, Brett ;
Kumar, Himanshu ;
Roquilly, Antoine ;
Poschmann, Jeremie ;
Lehman, Melanie ;
Nelson, Colleen C. ;
Sengupta, Debarka .
ELIFE, 2025, 13
[28]   A data-driven single-cell and spatial transcriptomic map of the human prefrontal cortex [J].
Huuki-Myers, Louise A. ;
Spangler, Abby ;
Eagles, Nicholas J. ;
Montgomery, Kelsey D. ;
Kwon, Sang Ho ;
Guo, Boyi ;
Grant-Peters, Melissa ;
Divecha, Heena R. ;
Tippani, Madhavi ;
Sriworarat, Chaichontat ;
Nguyen, Annie B. ;
Ravichandran, Prashanthi ;
Tran, Matthew N. ;
Seyedian, Arta ;
Hyde, Thomas M. ;
Kleinman, Joel E. ;
Battle, Alexis ;
Page, Stephanie C. ;
Ryten, Mina ;
Hicks, Stephanie C. ;
Martinowich, Keri ;
Collado-Torres, Leonardo ;
Maynard, Kristen R. .
SCIENCE, 2024, 384 (6698)
[29]   DeepGSEA: explainable deep gene set enrichment analysis for single-cell transcriptomic data [J].
Xiong, Guangzhi ;
Leroy, Nathan J. ;
Bekiranov, Stefan ;
Sheffield, Nathan C. ;
Zhang, Aidong .
BIOINFORMATICS, 2024, 40 (07)
[30]   Combining Single-Cell and Transcriptomic Data Revealed the Prognostic Significance of Glycolysis in Pancreatic Cancer [J].
Chen, Liang ;
Lin, Yunhua ;
Wei, Wei ;
Wang, Yue ;
Li, Fangyue ;
Du, Wang ;
Yang, Zhonghua ;
Hu, Yiming ;
Ying, Xiaomei ;
Tang, Qikai ;
Xie, Jiaheng ;
Yu, Hongzhu .
FRONTIERS IN GENETICS, 2022, 13